CMR

INSTITUTE OF USN
TECHNOLOGY
Internal Assessment Test 2— Feb. 2024
Sub: Advanced Java& J2EE Sub Code: 22MCA341
Date: 16/2/2024 Duration: 90 Ma>'< 50 Sem: | Il Branch: MCA
min’s Marks:
Note : Answer FIVE FULL Questions, choosing ONE full guestion from each Module
OBE
PART I MARKS
CO RBT
1 With an example program Explain the mechanism of Session Tracking in Servlets? 10 Cco1 L2
OR
2. Write a JAVA Servlet Program to Auto Web Page Refresh (Consider a webpage 10 CcOo2 L4
which is displaying Date and time)
PART 11
3 Describe the classes and interfaces of javax.servlet package. 10 co1 L2
OR
4, Explain how do you perform searching Strings along with an example program. 10 Cco1 L2
CMR
INSTITUTE OF
TECHNOLOGY USN
Internal Assessment Test 2— Feb. 2024
Sub: Advanced Java& J2EE Sub Code: | 22MCA341
Date: 16/2/2024 Duration: | 90 min’s Ma'\r/lli)'(50 Sem: | I Branch: MCA
Note : Answer FIVE FULL Questions, choosing ONE full question from each Module
OBE
PART I MARKS
CO | RBT
1 With an example program Explain the mechanism of SessionTracking in Servlets? 10 CO1| L2
OR
2. Write a JAVA Servlet Program to Auto Web Page Refresh (Consider a webpage 10 Cco2| L4
which is displaying Date and time)
PART II
3 Describe the classes and interfaces of javax.servlet package. 10 CO1| L2
OR
4. Explain how do you perform searching Strings along with an example program. 10 CO1| L2

Page 1 of 2

10

10

PART I11
What is JSP? What are different JSP tags demonstrate with an example.

OR
Write a Servlet program to read data from a HTML form (gender data from radio

buttons and colours data from check boxes) and display

What is Cookie? Explain creation of Cookie and retrieving information from cookie using
code snippets?

OR
Write a java program to check whether a string is palindrome or not

PART V
What is String? Explain all String Constructors available with code snippets.
OR
Explain the life cycle of a string.
PART IlII

What is JSP? What are different JSP tags demonstrate with an example.
OR

Write a Servlet program to read data from a HTML form (gender data from radio

buttons and colours data from check boxes) and display

What is Cookie? Explain creation of Cookie and retrieving information from cookie using
code snippets?

OR
Write a java program to check whether a string is palindrome or not

PART V
What is String? Explain all String Constructors available with code snippets.

OR

Explain the life cycle of a string.

Page 2 of 2

10 CO1| L2
10 CO2| L4
10 |CO1 L2

10 CO2| L4
10 |CO1 | L2
10 CO1] L2
10 CO1| L2
10 CO2| L4
10 |[CO1 L2

10 CO2| L4
10 [CO1 | L2
10 COl1| L2

1. With an example program Explain the mechanism of Session Tracking in
Servlets?
HttpSession object is used to store entire session with a specific client. We can
store, retrieve and remove attribute from HttpSession object. Any servlet can have

access to HttpSession object throughout the getSession() method

getSession() method returns a session
If the session already exist, it return the

Creating a new session " esisting session else create a new

\L/ sesion

HttpSession session = request.getSession():;

HttpSession session = reguest.getSession(true);

=
/
o S getSession(true) always return
a new session

Getting a pre-existing session

HttpSession session = reguest.getSession(false);

N retuma pre-existing
session

Destroying a session

session.invalidate(); <——— destroy a session

Some Important Methods of HttpSession

Methods

éDescription

L)) %re‘rurns the time when the session was created, measured in [
long getCreationTime()

milliseconds since midnight January 1, 1970 GMT.

;e‘rurnsa string containing the unique identifier assigned to the

ession.

turns the maximum time interval, in seconds.

destroy thesession

yoolean isNew() ite‘rurns true if the session is new else false

Complete Example demonstrating usage of HttpSession

index.html
<form method="post" action="Validate">
User: <input type="text" name="uname " />

<input type="submit" value="submit">
</fform>
Validate.java

public class Validate extends HttpServlet {
protected void doPost(request, response)

{
n....

String name = request.getParameter("user");
/lcreating a session
HttpSession session =
request.getSession();
session.setAttribute("use
r", uname);
response.sendRedirect("

Welcome");

Welcome.java

public class Welcome extends HttpServlet {

protected void doGet(request, response){
In....

HttpSession session = request.getSession();

String user =
(String)session.getAttribute("user”
); out.printin("Hello "+user);

}

2. Write a JAVA Servlet Program to Auto Web Page Refresh (Consider a webpage
which is displaying Date and time)

@WebServlet("/progra m2")

public class program2 extends HttpServiet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

response.setContentType("text/html™);

response.addHeader("Refresh","1");

PrintWriter out=response.getWriter();

out.printin("Text servlet says hi at "+new Date());

}
}
3. Describe the classes and interfaces of javax.servlet package.
Interface Description
Servlet Declares life cycle methods for a serviet.

ServietConfig Allows servlets to get initialization parameters.

ServletContext Enables servlets to log events and access information about their
environment.

ServletRequest Used to read data from a client request.

ServletResponse Used to write data to a client response.

Class Description

GenericServlet Implements the Serviet and ServietConfig interfaces.
ServletlnputStream :Pr{wides an input stream for reading requests from a client.
ServietOutputStream LProvides an output stream for writing responses to a client.
ServletException Indicates a servlet error occurred.
UnavailableException Indicates a serviet is unavailable.

Method Description

void destroy()
ServletConfig getServietConfig()

String getServletinfo()

Called when the servlet is unloaded.

Returns a ServletConfig object that contains any initialization
parameters.

Returns a string describing the servlet.

void init{ServletConfig sc)
throws ServletException

Called when the servlet is initialized. Initialization
parameters for the servlet can be obtained from sc.
An UnavailableException should be thrown if the
servlet cannot be initialized.

void service(ServletRequest regq,
ServletResponse res)
throws ServletException,
I0Exception

Called to process a request from a client. The request from
the client can be read from req. The response to the client
can be written to res. An exception is generated if a servlet
or 10 problem occurs.

TABLE 31-1 The Methods Defined by Servlet

The ServietConfig Interface

The ServletConfig interface allows a servlet to obtain configuration data when it is loaded.
The methods declared by this interface are summarized here:

Method Description
ServletContext getServletContext() Returns the context for this servlet.
String getlnitParameter(String param) Returns the value of the initialization parameter
named param.
Enumeration getlnitParameterNames() Returns an enumeration of all initialization parameter
names.
String getServietName() Returns the name of the invoking serviet.
Method Description
Object getAttribute(String attr) Returns the value of the server attribute named attr.
String getMimeType(String file) Returns the MIME type of file.
String getRealPath(String vpath) Returns the real path that corresponds to the virtual
path vpath.
String getServerinfo() Returns information about the server.
void log(String s) Writes s to the servlet log.
void log(String s, Throwable e) Writes s and the stack trace for e to the servlet log.
void setAttribute(String attr, Object val) Sets the attribute specified by attr to the value
passed in val.

TABLE 31-:2 Various Methods Defined by ServietContext

Method

Description

Object getAttribute(String attr)

Returns the value of the attribute named attr.

String getCharacterEncoding()

Returns the character encoding of the request.

int getContentLength()

Returns the size of the request. The value —1 is returned if the
size is unavailable.

String getContentType()

Returns the type of the request. A null value is returned if the
type cannot be determined.

ServietlnputStream getlnputStream()
throws |IOException

Returns a ServletinputStream that can be used to read binary
data from the reguest. An lllegalStateException is thrown if
getReader() has already been invoked for this request.

String getParameter(String pname)

Returns the value of the parameter named pname.

Enumeration getParameterMames()

String[] getParameterValues(String name)

String getProtocol()

BufferedReader getReader()
throws IOException

String getRemoteAddr()
String getRemoteHost()
String getScheme()

String getServerMamel()

Returns an enumeration of the parameter names for this request.

Returns an array containing values associated with the parameter

specified by name.

Returns a description of the protocol.

Returns a buffered reader that can be used to read text from the
request. An lllegalStateException is thrown if getlnputStream()
has already been invoked for this request.

Returns the string equivalent of the client IP address.

Returns the string equivalent of the client host name.

Returns the transmission scheme of the URL used for the reguest

(for example, “http”, “ftp”).

Returns the name of the server.

int getServerPort()

Returns the port number.

TABLE 31-3 Various Methods Defined by ServietRequest

Method Description

String getCharacterEncoding() | Returns the character encoding for the response.

ServletOutputStream Returns a ServietOutputStream that can be used to write binary data to the
getOutputStream() response. An lllegalStateException is thrown if getWriter() has already
throws |OException been invoked for this request.
PrintWriter getWriter() Returns a PrintWriter that can be used to write character data to the

throws I0Exception response. An lllegalStateException is thrown if getOutputStream()
has already been invoked for this request.

void setContentLength(int size) | Sets the content length for the response to size.

void setContentType(String type) ' Sets the content type for the response to type.

TABLE 314 Various Methods Defined by ServietResponse

Method Description

String getCharacterEncoding() Returns the character encoding for the response.

ServletQOutputStream Returns a ServletOutputStream that can be used to write binary data to the
getOutputStream() response. An lllegalStateException is thrown if getWriter() has already
throws IOException been invoked for this request.
PrintWriter getWriter() Returns a PrintWriter that can be used to write character data to the
throws I0Exception response. An lllegalStateException is thrown if getOutputStream()

has already been invoked for this request.
void setContentLength(int size) Sets the content length for the response to size.

void setContentType(String type) ' Sets the content type for the response to type.

TABLE 314 Various Methods Defined by ServietResponse

Generic Servlet Class:
* The GenericServlet class provides implementations of the basic life cycle methods for a
servlet.
* GenericServlet implements the Servlet and ServletConfig interfaces. In addition, a
method to append a string to the server log file is available.
* The signatures of this method are shown here:
void log(String s)
void log(String s, Throwable e)
Here, s is the string to be appended to the log, and e is an exception that occurred.
Servlet Input Stream:
* The ServletinputStream class extends InputStream.
* ltis implemented by the servlet container and provides an input stream that a servlet
developer can use to read the data from a client request.
+ It defines the default constructor.
* A method is provided to read bytes from the stream.
int readLine(byte[] buffer, int offset, int size) throws IOEXxception
ServletOutputStream:
* The ServletOutputStream class extends OutputStream.
» ltis implemented by the servlet container and provides an output stream that a servlet
developer can use to write data to a client response.
* A default constructor is defined.
» It also defines the print() and printin() methods, which output data to the stream.
javax.servlet defines two exceptions.
* Thefirst is ServletException, which indicates that a servlet problem has occurred.

* The second is UnavailableException, which extends ServletException. It indicates that a
servlet is unavailable.

4. Explain how do you perform searching Strings along with an example program.

/[Java Program to illustrate to Find a Substring
/l'in the String

/I Importing required classes
import java.io.*;

/l Main class
class GFG {

/I Main driver method
public static void main(String[] args)

{

/I A string in which a substring
Il is to be searched
String str
= "GeeksforGeeks is a computer science portal";

/I Returns index of first occurrence of substring
int firstindex = str.indexOf("Geeks");

System.out.printin("First occurrence of char Geeks"
+"isfound at: "
+ firstindex);

/I Returns index of last occurrence
int lastindex = str.lastindexOf("Geeks");
System.out.printin(
"Last occurrence of char Geeks is"
+ " found at : " + lastindex);

/I Index of the first occurrence

/I after the specified index if found

int first_in = str.indexOf("Geeks", 10);

System.out.printin("First occurrence of char Geeks"
+ " after index 10 : "
+ first_in);

int last_in = str.lastindexOf("Geeks", 20);
System.out.printin("Last occurrence of char Geeks "

+ "after index 20 is : "
+ last_in);

5. What is JSP? What are different JSP tags demonstrate with an example.

1.JSP scriptlet
source

tag

<% java source code %>

code

A scriptlet tag is used to execute java

in JSP.

In this example, we are displaying a welcome message.

<html>
<body>

<% out.print("welcome to jsp"); %>

</body>

</html>

2. JSP

Declaration Tag

The JSP declaration tag is used to declare variables, objects and methods.

The code written inside the jsp declaration tag is placed outside the service() method
of auto generated servlet.

So it doesn't get memory at each request.
<%! field or method declaration %>

declaration tag with variable
In

index.jsp

=html=

=hody=

=%! int data=50; %=

=%= "Value of the variable is:
= body>

=inmi=

+data

JSP Expression Tag

declaration tag that declares method index.jsp
= MLm=

= body=

k-H

int cubelint nl{ return n*n*n*;

Expression Tag is used to print out java language expression that is put between the tags. An
expression tag can hold any java language expression that can be used as an argument to the

out.print() method.

Syntax of Expression Tag
<%= JavaExpression %>

<%= (2*5) %> /Inote no ; at end of statement.

1. JSP directives

The jsp directives are messages that tells the web container how to translate a JSP page
into the corresponding servlet.

Syntax <%@ directive attribute="value" %>
There are three types of directives:

1. import directive
2. include directive

3. taglib directive

4. JSP Comments

JSP comment marks text or statements that the
JSP container should ignore. syntax of the JSP
comments <%- - This is JSP comment - -%>

6. Write a Servlet program to read data from a HTML form (gender data from radio
buttons and colours data from check boxes) and display.
<html>
<head>
<title>TODO supply a title</title>
<meta charset="UTF-8">
<meta hame="viewport" content="width=device-width, initial-scale=1.0">
</head>
<body>
<!I-- send the form data to url mapping “prg3“ and the get method is used -->
<form method ="post" action="prg3">
<!--Display 3 Colors RED, BLUE, GREEN in the dropdown Box -->
<h1> Select your colors</h1>
<input type="checkbox" name="color" value="red"/>RED</br>
<input type="checkbox" name="color" value="green"/>GREEN</br>
<input type="checkbox" name="color" value="blue"/>BLUE</br>
<h1> Select your Course</h1>
UG:<input type="radio" name="course" value="ug"/>

PG:<input type="radio" name="course" value="pg"/>

<input type="submit" value="Submit"/>
</fform>

</body>

</html>

Prg3.java

import java.io.|IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServietResponse;

public class prg3 extends HttpServiet {

@Override

protected void doPost(HttpServletRequest request, HitpServietResponse response)
throws ServletException, IOException {

/I Setting the HTTP Content-Type response header to text/html
response.setContentType("text/html™);

/I Returns a PrintWriter object out that can send character text to the client.
PrintWriter out=response.getWriter();

/I To retrieve the optional values (color) from HTML page and store in the string color

String[] col = request.getParameterValues("color");
String cor = request.getParameter("course");
out.printin("<htmI><body>");

out.printin("Selected Colours");

for(String c:col)

out.println(c);

out.printin("
You have selected course "+cor);
out.printin("</body></htm[>"),
out.close();

}
}

What is Cookie? Explain creation of Cookie and retrieving information from cookie
using

code snippets?

Cookies are small bits of textual information that a web server sends to a browser and
that the

browser later returns unchanged when visiting the same web site or domain

Sending cookies to the client:

1.Creating a cookie object

» Cookie():constructs a cookie.

» Cookie(String name, String value)constructs a cookie with a specified name and value.
EX:

Cookie ck=new Cookie("user",”
2.Setting the maximum age
setMaxAge() is used to specify how long (in seconds) the cookie should be valid.
Ex:cookie.setMaxAge(60*60*24);

3.Placing the cookie into the HTTP response headers.

We use response.addCookie to add cookies in the HTTP response header as follows:
response.addCookie(cookie);

Reading cookies from the client:

1. Call request.getCookies(). This yields an array of cookie objects.

2. Loop down the array, calling getName on each one until you find the cookie of
interest.

Ex:

String cookieName=*“userlID”;

Cookie[] cookies=request.getCookies();

If(cookies!=null)

{

for(int i=0;i<cookies.length;i++){

Cookie cookie=cookies]i];

if(cookieName.equals(cookie.getName()){

doSomethingwith(cookie.getValue());

1

. Write a java program to check whether a string is palindrome or not

mca");

/I Java Program to implement
/I Basic Approach to check if
/I string is a Palindrome
import java.io.*;

/I Driver Class
class GFG {
/I main function
public static boolean isPalindrome(String str)
{
/I Initializing an empty string to store the reverse
/I of the original str
String rev =",

/I Initializing a new boolean variable for the
/[answer

boolean ans = false;

for (inti = str.length() - 1;1>=0; i--) {
rev = rev + str.charAt(i);

}

/I Checking if both the strings are equal
if (str.equals(rev)) {
ans = true;

}

return ans;

}

public static void main(String[] args)

{
Il Input string

String str = "geeks";

/I Convert the string to lowercase
str = str.toLowerCase();

boolean A = isPalindrome(str);
System.out.printin(A);

9. What is String? Explain all String Constructors available with code snippets.

« String is basically an object that represents sequence of char values.
An array of characters works same as Java string.

« Java implements strings as objects of type String.

There are several constructors for String class.

1.To create an empty string, use default constructor:
String s= new String();

2. To create a string and initialize:

String s= new String(“Hello”);

3.To create a string object that contains same characters as
another string object:

String(String strObj);

To create a string having initial values:
o For example,
e char ch[]={‘h’, ‘e’, ‘I’, ‘I’, ‘0’};

o String s= new String(ch); //s contains hello
5. To specify a sub-range of a character array as an initializer
use the following constructor:

String(char chars]], int startindex, int numChars)

e For example,

e char ch[]={‘a’, ‘b’, °c’, ‘d’, ‘e’, ‘7, ‘g’};

e String s= new String(ch, 2, 3); //Now, s contains cde
6. The general forms are:

o String(byte asciiChars[])
o String(byte asciiChars[], int startIndex, int numChars)

e For example,
e byte ascii[] = {65, 66, 67, 68, 69, 70 };
e String s1 = new String(ascii); //
s1 contains ABCDEF String s2
= new String(ascii, 2, 3); // s2
contains CDE

o JDK 5 and higher versions have two more constructors. The first one supports the extended
Unicode character set.
The general form:
String(int codePoints]], int
startIndex, int numChars)

here, codePoints is array containing
Unicode .

8. Another constructor supports StringBuilder:
e String(StringBuilder strBuildObj)

10. Explain the life cycle of a servlet.
Java Servlets are programs that run on a Web or Application server

Act as a middle layer between a request coming from a Web browser or other HTTP client
and databases or applications on the HTTP server.

Using Servlets, you can collect input from users through web page forms, present records
from a database or another source, and create web pages dynamically.

Servlets are server side components that provide a powerful mechanism for developing
web applications.

A servlet life cycle can be defined as the entire process from its creation till the destruction. The
following are the paths followed by a servlet

The servlet is initialized by calling the init () method.

The servlet calls service() method to process a client's request.

The servlet is terminated by calling the destroy() method.

Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in details.

The init() method :

The init method is designed to be called only once.

It is called when the servlet is first created, and not called again for each user request. So, it is
used for one-time initializations, just as with the init method of applets.

The servlet is normally created when a user first invokes a URL corresponding to the servlet,
but you can also specify that the servlet be loaded when the server is first started.

The init() method simply creates or loads some data that will be used throughout the life of the
servlet.

The init method definition looks like this:

public void init() throws ServletException {

/I Initialization code...

}

The service() method :

The service() method is the main method to perform the actual task.
The servlet container (i.e. web server) calls the service() method to handle requests coming
from the client(browsers) and to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new thread and calls
service. The service() method checks the HTTP request type (GET, POST, PUT, DELETE,
etc.) and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

Signature of service method:

public void service(ServletRequest request, ServletResponse response)

throws ServletException, IOException

{
}

The service () method is called by the container and service method invokes doGe, doPost,
doPut, doDelete, etc.methods as appropriate.

So you have nothing to do with service() method but you override either doGet() or doPost()
depending on what type of request you receive from the client.

The doGet() and doPost() are most frequently used methods with in each service request. Here
is the signature of these two methods.

The doGet() Method

A GET request results from a normal request for a URL or from an HTML form that has no

METHOD specified and it should be handled by doGet() method.

public void doGet(HttpServletRequest request, HitpServietResponse response)

throws ServletException, IOException {

/I Servlet code

}

The doPost() Method

A POST request results from an HTML form that specifically lists POST as the METHOD and it
should be handled by doPost() method.

public void doPost(HttpServietRequest request, HttpServietResponse response)

throws ServletException, IOException

{

/I Servlet code

}

The destroy() method :

The destroy() method is called only once at the end of the life cycle of a servlet.

This method gives your servlet a chance to close database connections, halt background
threads, write cookie lists or hit counts to disk, and perform other such cleanup activities.
After the destroy() method is called, the servlet object is marked for garbage collection.
The destroy method definition looks like this:

public void destroy() {

/I Finalization code...

}

	index.html
	Validate.java
	Welcome.java
	<% java source code %>
	<%! field or method declaration %>
	Syntax <%@ directive attribute="value" %>

