
Page 1 of 2

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 2– Feb. 2024

Sub: Advanced Java& J2EE Sub Code: 22MCA341

Date: 16/2/2024 Duration:
90

min’s

Max

Marks:
50 Sem: III Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I MARKS

OBE

CO

RBT

1 With an example program Explain the mechanism of Session Tracking in Servlets?

OR

10

CO1 L2

2. Write a JAVA Servlet Program to Auto Web Page Refresh (Consider a webpage

which is displaying Date and time)

10 CO2 L4

3

PART II

Describe the classes and interfaces of javax.servlet package.

OR

10

CO1

L2

4.

Explain how do you perform searching Strings along with an example program.

10 CO1 L2

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 2– Feb. 2024

Sub: Advanced Java& J2EE Sub Code: 22MCA341

Date: 16/2/2024 Duration: 90 min’s
Max

Marks:
50 Sem: III Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I MARKS

OBE

CO

RBT

1 With an example program Explain the mechanism of SessionTracking in Servlets?

OR

10

CO1 L2

2. Write a JAVA Servlet Program to Auto Web Page Refresh (Consider a webpage

which is displaying Date and time)

10 CO2 L4

3
PART II

Describe the classes and interfaces of javax.servlet package.

OR

10

CO1

L2

4.

Explain how do you perform searching Strings along with an example program.

10 CO1 L2

Page 2 of 2

5
PART III

What is JSP? What are different JSP tags demonstrate with an example.

OR

10

CO1

L2

6 Write a Servlet program to read data from a HTML form (gender data from radio

buttons and colours data from check boxes) and display

10

CO2

L4

7 What is Cookie? Explain creation of Cookie and retrieving information from cookie using

code snippets?

10 CO1 L2

8

OR

Write a java program to check whether a string is palindrome or not

10

CO2

L4

9
PART V

What is String? Explain all String Constructors available with code snippets.

OR

10

CO1

L2

10 Explain the life cycle of a string.

10

CO1

L2

5

PART III

What is JSP? What are different JSP tags demonstrate with an example.

OR

10

CO1

L2

6 Write a Servlet program to read data from a HTML form (gender data from radio

buttons and colours data from check boxes) and display

10

CO2

L4

7 What is Cookie? Explain creation of Cookie and retrieving information from cookie using

code snippets?

10 CO1 L2

8

OR

Write a java program to check whether a string is palindrome or not

10

CO2

L4

9
PART V

What is String? Explain all String Constructors available with code snippets.

OR

10

CO1

L2

10 Explain the life cycle of a string.

10

CO1

L2

1. With an example program Explain the mechanism of Session Tracking in

Servlets?

HttpSession object is used to store entire session with a specific client. We can

store, retrieve and remove attribute from HttpSession object. Any servlet can have

access to HttpSession object throughout the getSession() method

Some Important Methods of HttpSession

Complete Example demonstrating usage of HttpSession

index.html

<form method="post" action="Validate">

User: <input type="text" name="uname " />

<input type="submit" value="submit">

</form>

Validate.java

public class Validate extends HttpServlet {

 protected void doPost(request, response)

{

//

String name = request.getParameter("user");

//creating a session

HttpSession session =

request.getSession();

session.setAttribute("use

r", uname);

response.sendRedirect("

Welcome");

}

}

Welcome.java

public class Welcome extends HttpServlet {

protected void doGet(request, response){

//

HttpSession session = request.getSession();

String user =

(String)session.getAttribute("user"

); out.println("Hello "+user);

}

}

2. Write a JAVA Servlet Program to Auto Web Page Refresh (Consider a webpage

which is displaying Date and time)

@WebServlet("/progra m2")

public class program2 extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

response.addHeader("Refresh","1");

 PrintWriter out=response.getWriter();

out.println("Text servlet says hi at "+new Date());

 }

 }

3. Describe the classes and interfaces of javax.servlet package.

Generic Servlet Class:

• The GenericServlet class provides implementations of the basic life cycle methods for a

servlet.

• GenericServlet implements the Servlet and ServletConfig interfaces. In addition, a

method to append a string to the server log file is available.

• The signatures of this method are shown here:

 void log(String s)

 void log(String s, Throwable e)

Here, s is the string to be appended to the log, and e is an exception that occurred.

Servlet Input Stream:

• The ServletInputStream class extends InputStream.

• It is implemented by the servlet container and provides an input stream that a servlet

developer can use to read the data from a client request.

• It defines the default constructor.

• A method is provided to read bytes from the stream.

 int readLine(byte[] buffer, int offset, int size) throws IOException

ServletOutputStream:

• The ServletOutputStream class extends OutputStream.

• It is implemented by the servlet container and provides an output stream that a servlet

developer can use to write data to a client response.

• A default constructor is defined.

• It also defines the print() and println() methods, which output data to the stream.

 javax.servlet defines two exceptions.

• The first is ServletException, which indicates that a servlet problem has occurred.

• The second is UnavailableException, which extends ServletException. It indicates that a

servlet is unavailable.

4. Explain how do you perform searching Strings along with an example program.

// Java Program to illustrate to Find a Substring

// in the String

// Importing required classes

import java.io.*;

// Main class

class GFG {

 // Main driver method

 public static void main(String[] args)

 {

 // A string in which a substring

 // is to be searched

 String str

 = "GeeksforGeeks is a computer science portal";

 // Returns index of first occurrence of substring

 int firstIndex = str.indexOf("Geeks");

 System.out.println("First occurrence of char Geeks"

 + " is found at : "

 + firstIndex);

 // Returns index of last occurrence

 int lastIndex = str.lastIndexOf("Geeks");

 System.out.println(

 "Last occurrence of char Geeks is"

 + " found at : " + lastIndex);

 // Index of the first occurrence

 // after the specified index if found

 int first_in = str.indexOf("Geeks", 10);

 System.out.println("First occurrence of char Geeks"

 + " after index 10 : "

 + first_in);

 int last_in = str.lastIndexOf("Geeks", 20);

 System.out.println("Last occurrence of char Geeks "

 + "after index 20 is : "

 + last_in);

 }

}

5. What is JSP? What are different JSP tags demonstrate with an example.

1.JSP scriptlet tag A scriptlet tag is used to execute java

 source code in JSP.

<% java source code %>

In this example, we are displaying a welcome message.
<html>
<body>
<% out.print("welcome to jsp"); %>
</body>

</html>

2. JSP Declaration Tag

The JSP declaration tag is used to declare variables, objects and methods.

The code written inside the jsp declaration tag is placed outside the service() method

of auto generated servlet.

So it doesn't get memory at each request.
<%! field or method declaration %>

JSP Expression Tag

Expression Tag is used to print out java language expression that is put between the tags. An

expression tag can hold any java language expression that can be used as an argument to the

out.print() method.

Syntax of Expression Tag
<%= JavaExpression %>

<%= (2*5) %> //note no ; at end of statement.

1. JSP directives

The jsp directives are messages that tells the web container how to translate a JSP page

into the corresponding servlet.

 Syntax <%@ directive attribute="value" %>

There are three types of directives:

1. import directive

2. include directive

3. taglib directive

4. JSP Comments

JSP comment marks text or statements that the
JSP container should ignore. syntax of the JSP
comments <%- - This is JSP comment - -%>

6. Write a Servlet program to read data from a HTML form (gender data from radio

buttons and colours data from check boxes) and display.

<html>

<head>

<title>TODO supply a title</title>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

</head>

<body>

<!-- send the form data to url mapping “prg3“ and the get method is used -->

<form method ="post" action="prg3">

<!--Display 3 Colors RED, BLUE, GREEN in the dropdown Box -->

<h1> Select your colors</h1>

<input type="checkbox" name="color" value="red"/>RED</br>

<input type="checkbox" name="color" value="green"/>GREEN</br>

<input type="checkbox" name="color" value="blue"/>BLUE</br>

<h1> Select your Course</h1>

UG:<input type="radio" name="course" value="ug"/>

PG:<input type="radio" name="course" value="pg"/>

<input type="submit" value="Submit"/>

</form>

</body>

</html>

Prg3.java

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class prg3 extends HttpServlet {

@Override

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Setting the HTTP Content-Type response header to text/html

response.setContentType("text/html");

// Returns a PrintWriter object out that can send character text to the client.

PrintWriter out=response.getWriter();

// To retrieve the optional values (color) from HTML page and store in the string color

String[] col = request.getParameterValues("color");

String cor = request.getParameter("course");

out.println("<html><body>");

out.println("Selected Colours");

for(String c:col)

out.println(c);

out.println("
You have selected course "+cor);

out.println("</body></html>");

out.close();

}

}

7. What is Cookie? Explain creation of Cookie and retrieving information from cookie

using

code snippets?

Cookies are small bits of textual information that a web server sends to a browser and

that the

browser later returns unchanged when visiting the same web site or domain

Sending cookies to the client:

1.Creating a cookie object

• Cookie():constructs a cookie.

• Cookie(String name, String value)constructs a cookie with a specified name and value.

EX:

Cookie ck=new Cookie("user",”mca");

2.Setting the maximum age

setMaxAge() is used to specify how long (in seconds) the cookie should be valid.

Ex:cookie.setMaxAge(60*60*24);

3.Placing the cookie into the HTTP response headers.

We use response.addCookie to add cookies in the HTTP response header as follows:

response.addCookie(cookie);

Reading cookies from the client:

1. Call request.getCookies(). This yields an array of cookie objects.

2. Loop down the array, calling getName on each one until you find the cookie of

interest.

Ex:

String cookieName=“userID”;

Cookie[] cookies=request.getCookies();

If(cookies!=null)

{

for(int i=0;i<cookies.length;i++){

Cookie cookie=cookies[i];

if(cookieName.equals(cookie.getName())){

doSomethingwith(cookie.getValue());

}}}

8. Write a java program to check whether a string is palindrome or not

// Java Program to implement

// Basic Approach to check if

// string is a Palindrome

import java.io.*;

// Driver Class

class GFG {

 // main function

 public static boolean isPalindrome(String str)

 {

 // Initializing an empty string to store the reverse

 // of the original str

 String rev = "";

 // Initializing a new boolean variable for the

 // answer

 boolean ans = false;

 for (int i = str.length() - 1; i >= 0; i--) {

 rev = rev + str.charAt(i);

 }

 // Checking if both the strings are equal

 if (str.equals(rev)) {

 ans = true;

 }

 return ans;

 }

 public static void main(String[] args)

 {

 // Input string

 String str = "geeks";

 // Convert the string to lowercase

 str = str.toLowerCase();

 boolean A = isPalindrome(str);

 System.out.println(A);

 }

}

9. What is String? Explain all String Constructors available with code snippets.

 String is basically an object that represents sequence of char values.
An array of characters works same as Java string.

 Java implements strings as objects of type String.

There are several constructors for String class.

1.To create an empty string, use default constructor:

String s= new String();

2. To create a string and initialize:

 String s= new String(“Hello”);

3. To create a string object that contains same characters as

another string object:

 String(String strObj);

To create a string having initial values:

 For example,

 char ch[]={‘h’, ‘e’, ‘l’, ‘l’, ‘o’};

 String s= new String(ch); //s contains hello
5. To specify a sub-range of a character array as an initializer

use the following constructor:

 String(char chars[], int startIndex, int numChars)

 For example,

 char ch[]={‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’’, ‘g’};

 String s= new String(ch, 2, 3); //Now, s contains cde

6. The general forms are:

 String(byte asciiChars[])

 String(byte asciiChars[], int startIndex, int numChars)

 For example,
 byte ascii[] = {65, 66, 67, 68, 69, 70 };

 String s1 = new String(ascii); //

s1 contains ABCDEF String s2

= new String(ascii, 2, 3); // s2

contains CDE

 JDK 5 and higher versions have two more constructors. The first one supports the extended

Unicode character set.

 The general form:

String(int codePoints[], int

startIndex, int numChars)

 here, codePoints is array containing

Unicode .

8. Another constructor supports StringBuilder:

 String(StringBuilder strBuildObj)

10. Explain the life cycle of a servlet.

Java Servlets are programs that run on a Web or Application server

Act as a middle layer between a request coming from a Web browser or other HTTP client

and databases or applications on the HTTP server.

Using Servlets, you can collect input from users through web page forms, present records

from a database or another source, and create web pages dynamically.

Servlets are server side components that provide a powerful mechanism for developing

web applications.

A servlet life cycle can be defined as the entire process from its creation till the destruction. The

following are the paths followed by a servlet

The servlet is initialized by calling the init () method.

The servlet calls service() method to process a client's request.

The servlet is terminated by calling the destroy() method.

Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in details.

The init() method :

The init method is designed to be called only once.

It is called when the servlet is first created, and not called again for each user request. So, it is

used for one-time initializations, just as with the init method of applets.

The servlet is normally created when a user first invokes a URL corresponding to the servlet,

but you can also specify that the servlet be loaded when the server is first started.

The init() method simply creates or loads some data that will be used throughout the life of the

servlet.

The init method definition looks like this:

public void init() throws ServletException {

// Initialization code...

}

The service() method :

The service() method is the main method to perform the actual task.

The servlet container (i.e. web server) calls the service() method to handle requests coming

from the client(browsers) and to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new thread and calls

service. The service() method checks the HTTP request type (GET, POST, PUT, DELETE,

etc.) and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

Signature of service method:

public void service(ServletRequest request, ServletResponse response)

throws ServletException, IOException

{

}

The service () method is called by the container and service method invokes doGe, doPost,

doPut, doDelete, etc.methods as appropriate.

So you have nothing to do with service() method but you override either doGet() or doPost()

depending on what type of request you receive from the client.

The doGet() and doPost() are most frequently used methods with in each service request. Here

is the signature of these two methods.

The doGet() Method

A GET request results from a normal request for a URL or from an HTML form that has no

METHOD specified and it should be handled by doGet() method.

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Servlet code

}

The doPost() Method

A POST request results from an HTML form that specifically lists POST as the METHOD and it

should be handled by doPost() method.

public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

// Servlet code

}

The destroy() method :

The destroy() method is called only once at the end of the life cycle of a servlet.

This method gives your servlet a chance to close database connections, halt background

threads, write cookie lists or hit counts to disk, and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage collection.

The destroy method definition looks like this:

public void destroy() {

// Finalization code...

}

	index.html
	Validate.java
	Welcome.java
	<% java source code %>
	<%! field or method declaration %>
	Syntax <%@ directive attribute="value" %>

