
                                  

                                                       Scheme of Evaluation                                                 

Internal Assessment Test 2 – April 2024 

Sub:     Operating System Concepts Sub Code: 22MCA12 

Date: 

08-

04-

24 Duration: 
90 

mins 
Max 

Marks:  50 

Sem: I Branch: MCA 

Q.NO Description Marks 

Distribution 

Max 

Marks 

1 What do you mean by Critical Section problem? Illustrate 

Peterson’s solution for a critical section problem. 

 Definition of Critical section Problem  

 Illustrate the Peterson’s solution 

 

 

4 

6 

 

 

10 

2 What are Semaphores? Explain the process of 

implementation of a Semaphore with an example. 

 Definition of Semaphores 

 Implementation of semaphore with an example 

 

 

 

3 

7 

 

10 

3 Explain the readers-writers problem and give a solution using 

semaphores. 

 Explanation of readers-writers problem using 

semaphores 

 

 

 

10 

   

 

    10 

4 Explain the producer-consumer problem and give a solution 

using semaphores. 

 Explanation of producer-consumer problem using 

semaphores 

 

 

 

10 

 

 

 

10 

5 What are monitors? Explain in detail with syntax. 

 Definition of monitors 

 Explanation of monitors with syntax 

 

 

2 

8 

 

10 

6 What is a deadlock? What are the necessary conditions for a 

deadlock to occur? 

 Definition of Deadlock 

 List of necessary conditions for a deadlock to occur 

 

 

3 

7 

 

 

10 

7 What is a thread? Explain the various types of threads. 

 Definition of thread 

 Types of thread with detail notes 

 

 

2 

8 

 

 

10 

 



 

8 

 
With neat diagrams explain Resource Allocation graph. 

 Explanation of RAG with diagarms 

 

 

10 

 

10 

9 Write and explain Banker’s algorithm with an example. 

 Explanation of Banker’s Algorithm. 

 Give an example of it 

 

 

5 

5 

 

10 

 

10 

What are the various approaches used in Deadlock 

prevention. 

 Explanation of deadlock prevention 

 Detail notes on various approaches used in 

deadlock prevention 

 

3 

7 

 

10 

 

 



Internal Assessment Test 2 – April  2024 

Operating System Concepts Sub Code: 22MCA12 

08/04/2024 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA 

 

 

PART I 
1. What do you mean by Critical Section problem? Illustrate Peterson’s solution for a 

critical section problem. 

Critical section problem  

A critical section is a code segment that accesses shared variables and has to be executed 

as an atomic action. It means that in a group of co-operating processes, at a given point of 

time, only one process must be executing its critical section. If other processes also want 

to execute its critical section, it must wait until the first one finishes.  

Critical section:  

 It is the part of the program where shared resources are accessed by various 

processes. 

 It is the place where shred variable, resources are placed. 

Solution to Critical section Problem 

A solution to the critical section problems must satisfy the following three 

conditions: 

1. Mutual exclusion 

2. Progress 

3. Bounded waiting 

4. No assumption related to H/W speed 

1. Mutual exclusion 

Out of a group of co-operating processes, only one process can be in its 

critical section at a given point of time. 

2. Progress: 

If no process is in its critical section and if one or more process wants to 

execute in critical section than one of these process must be allowed to get 

into its critical section. 

3. Bounded waiting: 

After a process makes a request for getting into its critical section, there 

is a limit for how many other processes can get into their critical section, 

before this process’s request is granted. So after the limit time is 

reached, system must grant the process permission to get into its critical 

section. 

4. No assumption related to H/W speed 

Peterson’s Solution 

 Good algorithmic description of solving the problem 

Two process solution 

 Assume that the load and store machine-language instructions are atomic; that is, 

cannot be interrupted 

 The two processes share two variables: 

               int turn; 



Boolean flag[2] 

 The variable turn indicates whose turn it is to enter the critical section 

 The flag array is used to indicate if a process is ready to enter the critical section. 

 flag[i] = true implies that process Pi is ready! 

 

Algorithm for Process Pi 

do { 

flag[i] = true; 

turn = j; 

while (flag[j] && turn = = j); 

 

critical section 

 

flag[i] = false; 

 

remainder section 

 

} while (true); 

 

 

 
 

 

 

 

 

 

 

 

 

 



2. What are Semaphores? Explain the process of implementation of a Semaphore with 

an example. 

Semaphores 

 Synchronization tool that provides more sophisticated ways (than Mutex locks) 

for process to synchronize their activities. 

 Semaphore S – integer variable 

 Can only be accessed via two indivisible (atomic) operations 

 wait() and signal() 

 Originally called P() and V() 

 Definition of the wait() operation 

wait(S) { 

while (S <= 0) 

; // busy wait 

S--; 

} 

 Definition of the signal() operation 

signal(S) { 

S++; 

} 

 Counting semaphore – integer value can range over an unrestricted domain 

 Binary semaphore – integer value can range only between 0 and 1 

 Same as a mutex lock 

 Can solve various synchronization problems 

 Consider P1 and P2 that require S1 to happen before S2 

Create a semaphore “synch” initialized to 0 

P1: 

S1; 

signal(synch); 

P2: 

wait(synch); 

S2; 

 Can implement a counting semaphore S as a binary semaphore 

Semaphore Implementation 

 

 Must guarantee that no two processes can execute the wait() and signal() on the same 

semaphore at the same time.  

 Thus, the implementation becomes the critical section problem where the wait and signal 

code are placed in the critical section 

 Could now have busy waiting in critical section implementation 

 But implementation code is short 

 Little busy waiting if critical section rarely occupied 

 

 Note that applications may spend lots of time in critical sections and therefore this is not 

a good solution 

  

 



Semaphore Implementation with no Busy waiting 

 With each semaphore there is an associated waiting queue 

 Each entry in a waiting queue has two data items: 

 value (of type integer) 

 pointer to next record in the list 

Two operations: 

 block – place the process invoking the operation on the appropriate waiting queue 

 wakeup – remove one of processes in the waiting queue and place it in the ready queue 

 typedef struct{ 

int value; 

struct process *list; 

} semaphore; 

 

wait(semaphore *S) { 

S->value--; 

if (S->value < 0) { 

add this process to S->list; 

block(); 

} 

} 

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) { 

remove a process P from S->list; 

wakeup(P); 

} 

} 

PART II 
3. Explain the readers-writers problem and give a solution using semaphores. 

Definition:  
There is a data containing some files ,records etc that is shared among the number of 

concurrent processes. The processes that reads the data from that common shared data 

area are called reader processes and processes that perform write operation(writing new 

data value or updating or modifying the data value) on the data stored in common shared 

data area are called writer processes. The various conditions that need to take care in 

Reader-writer case are:   

 Any number of reader processes can simultaneously read the data from common 

shared data area but only one writer at a time may write to that common shared 

data area.   

 If any of the writer process is writing to common shared data area, then no reader 

processes are allowed to read it till the writer process has finished.   

 If there is at least one reader reading the common data area, no writer processes 

are allowed to that common data area 

 The reader-writer problem solution using semaphores consists of two binarysemaphores- 

mutex and rw_mutex and one integer variable NumberOfReaders(rc). 



 The semaphore rw_mutex is shared by the all the processes and the semaphore mutex and 

the integer variable NumberOfReaders(rc) is shared by reader processes only.  

 Here, variable NumberOfReaders(rc) keep track of how many reader processes are 

reading the common shared data at a time, and mutex provide mutual exclusion among 

reader processes when variable NumberOfReaders(rc) is incremented or decremented  

 The semaphore rw_mutex which is common to both readers and writers processes 

ensures that when one writer process is using the common data area, no other reader or 

writer processes can access that common data area 

 

 
 

 

4. Explain the producer-consumer problem and give a solution using semaphores. 

 

 
Concurrent access to shared data may result in data inconsistency (change in behavior) 

Maintaining data consistency requires mechanisms to ensure the orderly execution of 

cooperating processes 

Suppose that we wanted to provide a solution to the “producer-consumer” problem that 

fills all the buffers. 



We can do so by having an integer variable “count” that keeps track of the number of full 

buffers. 

Initially, count is set to 0. 

It is incremented by the producer after it produces a new buffer. 

It is decremented by the consumer after it consumes a buffer. 

Producer 

while (true) { 

/* produce an item and put in next Produced */ 

while (count == BUFFER_SIZE) 

; // do nothing 

buffer [in] = next Produced; 

in = (in + 1) % BUFFER_SIZE; 

count++; 

 

} 

Consumer 

while (true) { 

 

while (count == 0) 

; // do nothing 

next Consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

count--; 

/* consume the item in next Consumed 

 

} 

 

 

PART III 
5. What are monitors? Explain in detail with syntax. 

 A feature of programming languages called monitors helps control access to shared data. 

The Monitor is a collection of shared actions, data structures, and synchronization 

between parallel procedure calls. A monitor is therefore also referred to as a 

synchronization tool. Some of the languages that support the usage of monitors include 

Java, C#, Visual Basic, Ada, and concurrent Euclid. Although they can call the monitor’s 

procedures, processes running outside of the monitor are unable to access its internal 

variables. 

 For example, the Java programming language provides synchronization mechanisms like 

the wait() and notify() constructs. 

 

 Monitor in os has a simple syntax similar to how we define a class, it is as follows: 

 

Monitor monitorName{ 

variables_declaration; 

condition_variables; 

 



procedure p1{ ... }; 

procedure p2{ ... }; 

... 

procedure pn{ ... }; 

 

{ 

    initializing_code; 

} 

} 

In an operating system, a monitor is only a class that includes variable_declarations, 

condition_variables, different procedures (functions), and an initializing_code block for 

synchronizing processes. 

Characteristics of Monitors in OS 

Monitors in operating systems possess several key characteristics that make them 

valuable tools for managing concurrent access to shared resources. Here are the main 

characteristics of monitors: 

 Mutual Exclusion: Monitors ensure mutual exclusion, which means only one process or 

thread can be inside the monitor at any given time. This property prevents concurrent 

processes from accessing shared resources simultaneously and eliminates the risk of data 

corruption or inconsistent results due to race conditions. 

 Encapsulation: Monitors encapsulate both the shared resource and the procedures that 

operate on it. By bundling the resource and the relevant procedures together, monitors 

provide a clean and organized approach to managing concurrent access. This 

encapsulation simplifies the design and maintenance of concurrent programs, as the 

necessary synchronization logic is localized within the monitor. 

 Synchronization Primitives: Monitors often support synchronization primitives, such as 

condition variables. Condition variables enable threads within the monitor to wait for 

specific conditions to become true or to signal other threads when certain conditions are 

met. These primitives allow for efficient coordination among threads and help avoid 

busy-waiting, which can waste CPU cycles. 

 Blocking Mechanism: When a process or thread attempts to enter a monitor that is 

already in use, it is blocked and put in a queue (entry queue) until the monitor becomes 

available. This blocking mechanism avoids busy-waiting and allows other processes to 

proceed while waiting for their turn to access the monitor. 

 Local Data: Each thread that enters a monitor has its own local data or stack, which 

means the variables declared within a monitor procedure are unique to each thread’s 

execution. This feature prevents interference between threads and ensures that data 

accessed within the monitor remains consistent for each thread. 

 Priority Inheritance: In some advanced implementations of monitors, a priority 

inheritance mechanism can be used to prevent priority inversion. When a higher-priority 

thread is waiting for a lower-priority thread to release a resource inside the monitor, the 

lower-priority thread’s priority may be temporarily elevated to avoid unnecessary delays 

caused by priority inversion scenarios. 

 High-Level Abstraction: Monitors provide a higher-level abstraction for concurrency 

management compared to low-level synchronization mechanisms like semaphores or 



spinlocks. This abstraction reduces the complexity of concurrent programming and 

makes it easier to write correct and maintainable code. 

Components of Monitor in an operating system 

In an operating system, a monitor is a synchronization construct that helps manage 

concurrent access to shared resources by multiple processes or threads. A monitor 

typically consists of the following main components: 

 Shared Resource: 
The shared resource is the data or resource that multiple processes or threads need to 

access in a mutually exclusive manner. Examples of shared resources can include critical 

sections of code, global variables, or any data structure that needs to be accessed 

atomically. 

 Entry Queue: 

The entry queue is a data structure that holds the processes or threads that are waiting to 

enter the monitor and access the shared resource. When a process or thread tries to enter 

the monitor while it is already being used by another process, it is placed in this queue, 

and its execution is temporarily suspended until the monitor becomes available. 

 Entry Procedures (or Monitor Procedures): 
Entry procedures are special procedures that provide access to the shared resource and 

enforce mutual exclusion. When a process or thread wants to access the shared resource, 

it must call one of these entry procedures. The monitor’s implementation ensures that 

only one process or thread can execute an entry procedure at a time, thus achieving 

mutual exclusion. 

 Condition Variables: 
Condition variables enable communication and synchronization between processes or 

threads within the monitor. They allow threads to wait until a specific condition is 

satisfied or to signal other threads when certain conditions become true. Condition 

variables are crucial for avoiding busy-waiting, which can be inefficient and wasteful of 

system resources. 

 Local Data (or Local Variables): 
Each process or thread that enters the monitor has its own set of local data or local 

variables. These variables are unique to each thread’s execution and are not shared 

between threads. Local data allows each thread to work independently within the monitor 

without interfering with other threads’ data. 

 Condition Variables 

The condition variables of the monitor can be subjected to two different types of 

operations: 

1. Wait 

2. Signal 

Consider a condition variable (y) is declared in the monitor: 

y.wait(): The activity/process that applies the wait operation on a condition variable will 

be suspended, and the suspended process is located in the condition variable’s block 

queue. 

y.signal(): If an activity/process applies the signal action on the condition variable, then 

one of the blocked activity/processes in the monitor is given a chance to execute. 

Advantages of Monitor in OS 



 Compared to semaphore-based solutions, monitors have the advantage of making 

concurrent or parallel programming simpler and less error-prone. 

 It helps in operating system process synchronization. 

 Monitors have mutual exclusion built in. 

 Semaphores are more difficult to set up than monitors. 

 Semaphores can lead to timing errors, which monitors may be able to fix. 

Disadvantages of Monitor in OS 

 Monitors must be implemented with the programming language. 

 Monitor puts more work on the compiler. 

 The monitor needs to be aware of the features offered by the operating system for 

managing critical steps in the parallel processes. 

 

6. What is a deadlock? What are the necessary conditions for a deadlock to occur? 

 Every process needs some resources to complete its execution. However, the 

resource is granted in a sequential order. 

1. The process requests for some resource. 

2. OS grant the resource if it is available otherwise let the process waits. 

3. The process uses it and release on the completion. 

 A Deadlock is a situation where each of the computer process waits for a resource 

which is being assigned to some another process. In this situation, none of the 

process gets executed since the resource it needs, is held by some other process 

which is also waiting for some other resource to be released. 

 Let us assume that there are three processes P1, P2 and P3. There are three 

different resources R1, R2 and R3. R1 is assigned to P1, R2 is assigned to P2 and 

R3 is assigned to P3. 

 After some time, P1 demands for R1 which is being used by P2. P1 halts its 

execution since it can't complete without R2. P2 also demands for R3 which is 

being used by P3. P2 also stops its execution because it can't continue without R3. 

P3 also demands for R1 which is being used by P1 therefore P3 also stops its 

execution. 

Necessary conditions for Deadlocks 

1. Mutual Exclusion 

 A resource can only be shared in mutually exclusive manner. It implies, if two 

process cannot use the same resource at the same time. 

2. Hold and Wait 

 A process waits for some resources while holding another resource at the same 

time. 

3. No preemption 

 The process which once scheduled will be executed till the completion. No other 

process can be scheduled by the scheduler meanwhile. 

4. Circular Wait 

 All the processes must be waiting for the resources in a cyclic manner so that the 

last process is waiting for the resource which is being held by the first process. In 

this scenario, a cycle is being formed among the three processes. None of the 

process is progressing and they are all waiting. The computer becomes 

unresponsive since all the processes got blocked. 



SYSTEM MODEL 

A deadlock occurs when a set of processes is stalled because each process is holding a resource 

and waiting for another process to acquire another resource. In the diagram below, for  

example, Process 1 is holding Resource 1 while Process 2 acquires Resource 2, and Process 2 

is waiting for Resource 1. 

 

 

 
 

 

System Model : 

 For the purposes of deadlock discussion, a system can be modeled as a collection of 

limited resources that can be divided into different categories and allocated to a variety of 

processes, each with different requirements. 

 Memory, printers, CPUs, open files, tape drives, CD-ROMs, and other resources are 

examples of resource categories. 

 By definition, all resources within a category are equivalent, and any of the resources 

within that category can equally satisfy a request from that category. If this is not the case 

(i.e. if there is some difference between the resources within a category), then that category 

must be subdivided further. For example, the term “printers” may need to be subdivided 

into “laser printers” and “color inkjet printers.” 

 Some categories may only have one resource. 

 The kernel keeps track of which resources are free and which are allocated, to which 

process they are allocated, and a queue of processes waiting for this resource to become 

available for all kernel-managed resources. Mutexes or wait() and signal() calls can be used 

to control application-managed resources (i.e. binary or counting semaphores. ) 

 

 When every process in a set is waiting for a resource that is currently assigned to another 

process in the set, the set is said to be deadlocked. 

Operations: 

In normal operation, a process must request a resource before using it and release it when 

finished, as shown below. 

1. Request– 

If the request cannot be granted immediately, the process must wait until the resource(s) 

required to become available. The system, for example, uses the functions open(), malloc(), 

new(), and request (). 

2. Use– 



The process makes use of the resource, such as printing to a printer or reading from a file. 

3. Release– 

The process relinquishes the resource, allowing it to be used by other processes. 

Necessary Conditions 

There are four conditions that must be met in order to achieve deadlock as follows. 

1. Mutual Exclusion – 

At least one resource must be kept in a non-shareable state; if another process requests it, it 

must wait for it to be released. 

 

2. Hold and Wait – 

A process must hold at least one resource while also waiting for at least one resource that 

another process is currently holding. 

 

3. No preemption – 

Once a process holds a resource (i.e. after its request is granted), that resource cannot be 

taken away from that process until the process voluntarily releases it. 

 

4. Circular Wait – 

There must be a set of processes P0, P1, P2,..., PN such that every P[I] is waiting for P[(I + 

1) percent (N + 1)]. (It is important to note that this condition implies the hold-and-wait 

condition, but dealing with the four conditions is easier if they are considered separately). 

 

 

PART IV 
7. What is a thread? Explain the various types of threads. 

A thread is a single sequence stream within a process. Threads are also called lightweight 

processes as they possess some of the properties of processes. Each thread belongs to 

exactly one process. In an operating system that supports multithreading, the process can 

consist of many threads. But threads can be effective only if the CPU is more than 1 

otherwise two threads have to context switch for that single CPU. 

 

 Threads run in parallel improving the application performance. Each such thread has its 

own CPU state and stack, but they share the address space of the process and the 

environment.  

 Threads can share common data so they do not need to use inter-process communication. 

Like the processes, threads also have states like ready, executing, blocked, etc.  

 Priority can be assigned to the threads just like the process, and the highest priority thread 

is scheduled first. 

 Each thread has its own Thread Control Block (TCB). Like the process, a context switch 

occurs for the thread, and register contents are saved in (TCB). As threads share the same 

address space and resources, synchronization is also required for the various activities of 

the thread. 

 

 

 

 

https://www.geeksforgeeks.org/inter-process-communication-ipc/
https://www.geeksforgeeks.org/thread-control-block-in-operating-system/


Components of Threads 

These are the basic components of the Operating System. 

 

 Stack Space 

 Register Set 

 Program Counter 

Types of Thread in Operating System 

Threads are of two types. These are described below. 

 User Level Thread  

 Kernel Level Thread 

 

 

 

 
 

 

1. User Level Threads 

User Level Thread is a type of thread that is not created using system calls. The kernel has no 

work in the management of user-level threads. User-level threads can be easily implemented by 

the user. In case when user-level threads are single-handed processes, kernel-level thread 

manages them. Let’s look at the advantages and disadvantages of User-Level Thread. 

Advantages of User-Level Threads 

 Implementation of the User-Level Thread is easier than Kernel Level Thread. 

 Context Switch Time is less in User Level Thread. 

 User-Level Thread is more efficient than Kernel-Level Thread. 

 Because of the presence of only Program Counter, Register Set, and Stack Space, it has a 

simple representation. 

Disadvantages of User-Level Threads 

 There is a lack of coordination between Thread and Kernel. 

 Inc case of a page fault, the whole process can be blocked. 

2. Kernel Level Threads 

https://www.geeksforgeeks.org/context-switch-in-operating-system/


A kernel Level Thread is a type of thread that can recognize the Operating system 

easily. Kernel Level Threads has its own thread table where it keeps track of the 

system. The operating System Kernel helps in managing threads. Kernel Threads 

have somehow longer context switching time. Kernel helps in the management of 

threads. 

Advantages of Kernel-Level Threads 

 It has up-to-date information on all threads. 

 Applications that block frequency are to be handled by the Kernel-Level Threads. 

 Whenever any process requires more time to process, Kernel-Level Thread provides 

more time to it. 

Disadvantages of Kernel-Level threads 

 Kernel-Level Thread is slower than User-Level Thread. 

 Implementation of this type of thread is a little more complex than a user-level thread. 

 

8. With neat diagrams explain Resource Allocation graph. 

The resource allocation graph is the pictorial representation of the state of a system. As its name 

suggests, the resource allocation graph is the complete information about all the processes which 

are holding some resources or waiting for some resources. 

It also contains the information about all the instances of all the resources whether they are 

available or being used by the processes. 

In Resource allocation graph, the process is represented by a Circle while the Resource is 

represented by a rectangle. Let's see the types of vertices and edges in detail. 

 

 

 

 
 

 

 

Vertices are mainly of two types, Resource and process. Each of them will be represented by a 

different shape. Circle represents process while rectangle represents resource. 

 

A resource can have more than one instance. Each instance will be represented by a dot inside 

the rectangle. 

 

https://www.geeksforgeeks.org/kernel-level-threads-in-operating-system/


 
 

Edges in RAG are also of two types, one represents assignment and other represents the wait of a 

process for a resource. The above image shows each of them. 

 

A resource is shown as assigned to a process if the tail of the arrow is attached to an instance to 

the resource and the head is attached to a process. 

 

A process is shown as waiting for a resource if the tail of an arrow is attached to the process 

while the head is pointing towards the resource. 

 
 

 

 

Example 

Let's consider 3 processes P1, P2 and P3, and two types of resources R1 and R2. The resources 

are having 1 instance each. 

 

According to the graph, R1 is being used by P1, P2 is holding R2 and waiting for R1, P3 is 

waiting for R1 as well as R2. 

The graph is deadlock free since no cycle is being formed in the graph. 



 

 
 

Deadlock Detection using RAG 

If a cycle is being formed in a Resource allocation graph where all the resources have the single 

instance then the system is deadlocked. 

In Case of Resource allocation graph with multi-instanced resource types, Cycle is a necessary 

condition of deadlock but not the sufficient condition. 

The following example contains three processes P1, P2, P3 and three resources R2, R2, R3. All 

the resources are having single instances each. 

 

 
 

If we analyze the graph then we can find out that there is a cycle formed in the graph since the 

system is satisfying all the four conditions of deadlock. 

 



Allocation Matrix 

Allocation matrix can be formed by using the Resource allocation graph of a system. In 

Allocation matrix, an entry will be made for each of the resource assigned. For Example, in the 

following matrix, en entry is being made in front of P1 and below R3 since R3 is assigned to P1. 

 
 

Request Matrix 

In request matrix, an entry will be made for each of the resource requested. As in the following 

example, P1 needs R1 therefore an entry is being made in front of P1 and below R1. 

 

 

 
 

 

Avial = (0,0,0) 

Neither we are having any resource available in the system nor a process going to release. Each 

of the process needs at least single resource to complete therefore they will continuously be 

holding each one of them.We cannot fulfill the demand of at least one process using the available 

resources therefore the system is deadlocked as determined earlier when we detected a cycle in 

the graph. 



PART V 
9. Write and explain Banker’s algorithm with an example. 

The banker’s algorithm is a resource allocation and deadlock avoidance algorithm 

that tests for safety by simulating the allocation for predetermined maximum possible amounts of 

all resources, then makes an “s-state” check to test for possible activities, before deciding 

whether allocation should be allowed to continue. 

 

Why Banker’s algorithm is name do so? 

 

Banker’s algorithm is named so because it is used in banking system to check whether loan can 

be sanctioned to a person or not. Suppose there are n number of account holders in a bank and 

the total sum of their money is S. If a person applies for a loan then the bank first subtracts the 

loan amount from the total money that bank has and if the remaining amount is greater than S 

then only the loan is sanctioned. It is done because if all the account holders comes to withdraw 

their money then the bank can easily do it. 

 

In other words, the bank would never allocate its money in such a way that it can no longer 

satisfy the needs of all its customers. The bank would try to be in safe state always. Following 

Data structures are used to implement the Banker’s Algorithm: Let ‘n’ be the number of 

processes in the system and ‘m’ be the number of resources types. 

 

Available : 

 It is a 1-d array of size ‘m’ indicating the number of available resources of 

each type. 

 Available[ j ] = k means there are ‘k’ instances of resource type Rj 

Max : 

 It is a 2-d array of size ‘n x m’ that defines the maximum demand of each 

process in a system. 

 Max[i] [j] = k means process Pi may request at most ‘k’ instances of 

resource type Rj. 

 

Allocation : 

 It is a 2-d array of size ‘n x m’ that defines the number of resources of each 

type currently allocated to each process. 

 Allocation[ i][ j ] = k means process Pi is currently allocated ‘k’ instances of 

resource type Rj 

Need : 

 It is a 2-d array of size ‘nxm’ that indicates the remaining resource need of 

each process. 

 Need [ i] [ j ] = k means process Pi currently need ‘k’ instances of resource 

type Rj for its execution. 

 Need [ i][ j ] = Max [ i][ j ] – Allocation [ i][ j ] 

 

Allocationi specifies the resources currently allocated to process Pi and Needi specifies the 

additional resources that process Pi may still request to complete its task. 

Banker’s algorithm consists of Safety algorithm and Resource request algorithm 



ALGORITHM: 

 

1) Let Work and Finish be vectors of length ‘m’ and ‘n’ respectively. 

Initialize: Work = Available 

Finish[i] = false; for i=0, 1, 2, 3....n-1; 

2) Find an index i such that both 

a) Finish[i] = false 

b) Needi <= Work 

if no such i exists goto step (4) 

 

3) Work = Work + Allocation[i] 

Finish[i] = true 

goto step (2) 

4) if Finish [i] = =true for all i 

then the system is in a safe state 

Where m= number of resource types 

n=number of process in the system 

 

 

Example: 

Considering a system with five processes P0 through P4 and three resources of type 

A, B, C. Resource type A has 10 instances, B has 5 instances and type C has 7 

instances. Suppose at time t0 following snapshot of the system has been taken: 

 

 
 

 



 



 
 

 

 

 



10. What are the various approaches used in Deadlock prevention. 

 

 

Deadlocks can be prevented by preventing at least one of the four required conditions: 

Mutual Exclusion  

Shared resources such as read-only files do not lead to deadlocks. Unfortunately some 

resources, such as printers and tape drives, require exclusive access by a single process.  

Hold and Wait 

 To prevent this condition processes must be prevented from holding one or more resources 

while simultaneously waiting for one or more others.  

There are several possibilities for this: 

i. Require that all processes request all resources at one time. This can be wasteful of system 

resources if a process needs one resource early in its execution and doesn't need some other 

resource until much later. 

ii. Require that processes holding resources must release them before requesting new resources, 

and then re-acquire the released resources along with the new ones in a single new request. 

This can be a problem if a process has partially completed an operation using a resource and 

then fails to get it re-allocated after releasing it. 

iii. Either of the methods described above can lead to starvation if a process requires one or more 

popular resources. 

No Preemption 

 Preemption of process resource allocations can prevent this condition of deadlocks, when it is 

possible. 

i. One approach is that if a process is forced to wait when requesting a new resource, then all 

other resources previously held by this process are implicitly released, ( preempted ), forcing 

this process to reacquire the old resources along with the new resources in a single request, 

similar to the previous discussion.  

ii.  Another approach is that when a resource is requested and not available, then the system 

looks to see what other processes currently have those resources and are themselves blocked 

waiting for some other resource. If such a process is found, then some of their resources may 

get preempted and added to the list of resources for which the process is waiting.  

iii.  Either of these approaches may be applicable for resources whose states are easily saved and 

restored, such as registers and memory, but are generally not applicable to other devices 

such as printers and tape drives 



Circular Wait  

i. One way to avoid circular wait is to number all resources, and to require that 

processes request resources only in strictly increasing ( or decreasing ) order. 

ii. In other words, in order to request resource Rj, a process must first release 

all Ri such that i >= j. 

iii. One big challenge in this scheme is determining the relative ordering of the 

different resources 

 


	Deadlock Detection using RAG
	Allocation Matrix
	Request Matrix
	Avial = (0,0,0)


