USN		 	 	 	 	
	USN					

USN

	Internal Assessment Test I – March 2024						
Sub:	Mathematical Foundation for Computer ApplicationsSub Code:22MCA11	Bra	nch: MC	А			
Date:	12/03/2024Duration:90 minutesMax Marks:50Sem / Sec:	I A&B		OF	OBE		
	Note: Answer FIVE FULL Questions, choosing ONE full question from each part. <u>PART I</u>		MARKS	CO	RBT		
1	Let $A=\{1, 2, 3, 4\}$ and R be a relation on A defined by 'xRy iff x divides y'. Write down R as of ordered pairs. Find the matrix of R and draw the digraph of R. Find the in-degree and out-of each vertex.		[10]	C01	L2		
	OR						
2	Let A={1, 2, 3, 4}, B={2, 5}, C={3, 4, 7}. Find (i) $A \times B$ (ii) $B \times A$ (iii) $A \times A$ (iv) $(A \times C) \cup (B \times C)$ (v) $(A \cup B) \times C$		[10]	CO1	L2		
	Let $M_R = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $M_S = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ be the matrix of the relations R and S on A i) $R \cup S$ ii) $R \cap S$ iii) \overline{R} iv) S^c and write their matrix representation given A= {a, OR		[10]	CO1	L3		
4	Let A = {1, 2, 3, 4} and R = {(1, 2), (1, 3), (2, 4), (3, 2), (3, 3), (3, 4)} be a relation on A. Ver $M(R^2) = [M(R)]^2$.	fy that	[10]	CO1	L2		

Internal Assessment Test I – March 2024

Internal Assessment Test I – March 2024

			Inter in	ai Assessment 1	COUL	march 202					
Sub:	Mathematical F	Foundation fo	r Computer A	pplications		Sub Code:	22MCA11	Branch:	MCA	A	
Date:	12/03/2024Duration:90 minutesMax Marks:50Sem / Sec:I A&B					A&B		OF	BE		
	Note: Answer	r FIVE FUL		choosing ONE f	ull qu	estion from	each part.	M	ARKS	CO	RBT
	Let $A = \{1, 2, 3, of ordered pairs. of each vertex.$		a relation on A					a set [[10]	CO1	L2
				OR							
2	Let $A = \{1, 2, 3,$			$\{ \text{Find } (i) \ A \times B \\ (B \times C) (v) \ \} $			ii) A × A	I	10]	CO1	L2
				PART II							
	Let $M_R = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$	1 0/							10]	CO1	L3
	i) $R \cup S$ ii)	KIIS III)	к <i>iv</i>) 5° а	nd write their ma	atrix r	epresentation	given $A = \{a, b, d\}$	c}.			
	Let $A = \{1, 2, 3, M(R^2) = [M(R)]$		(1, 2), (1, 3), (2, 4), (3, 2), (3, 3	3), (3,	4)} be a relati	on on A. Verify	that [10]	CO1	L2

5	PART III Define the following properties of a relation with an example for each. (i) Reflexive (ii) Symmetric (iii) Anti-symmetric (iv) Transitive (v) partition of a set OR	[10]	CO1	L1
6	Consider A={1, 2, 3,,11, 12}. The relation R on A is defined as $'(x, y) \in R$ if $f(x - y)$ is a multiple of 5'. Verify that R is an equivalence relation.	[10]	CO1	L3
7	PART IVDefine Equivalence Relations and Partial Order. Let A = {a, b, c, d, e}. Consider the partition $\{a, b\}, \{c, d\}, \{e\}\}$ of A. Find the equivalence relation inducing this partition.OR	[10]	CO3	L2
8	Let A= $\{1, 2, 3, 4, 5\}$ and R be a relation defined on $A \times A$ by	[10]	CO3	L2
	$(x_1, y_1)R(x_2, y_2)$ iff $x_1 + y_1 = x_2 + y_2$. Determine the partition of $A \times A$ induced by R. <u>PART V</u>			
9	Let $A = \{1, 2, 3, 4, 6, 12\}$. On A, the relation R is defined by 'aRb iff a divides b'. Prove that R is a partial order on A. Draw the Hasse diagram for this relation.	[10]	CO6	L3
	OR			
10	Let A={2, 3, 4, 6, 8, 12, 24} and R denote the partial order of divisibility, ie., xRy iff x divides y. Draw the Hasse diagram and Find the (i) least element (ii) greatest element (iii) minimal elements (iv) maximal elements	[10]	CO6	L2

5	PART III Define the following properties of a relation with an example for each. (i) Reflexive (ii) Symmetric (iii) Anti-symmetric (iv) Transitive (v) partition of a set OR	[10]	CO1	L1
6	Consider A={1, 2, 3,,11, 12}. The relation R on A is defined as $'(x, y) \in R$ if $f = x - y$ is a multiple of 5'. Verify that R is an equivalence relation.	[10]	CO1	L3
7	PART IVDefine Equivalence Relations and Partial Order. Let A = {a, b, c, d, e}. Consider the partition $\{a, b\}, \{c, d\}, \{e\}\}$ of A. Find the equivalence relation inducing this partition.OR	[10]	CO3	L2
8	Let $A = \{1, 2, 3, 4, 5\}$ and R be a relation defined on $A \times A$ by	[10]	CO3	L2
	$(x_1, y_1)R(x_2, y_2)$ iff $x_1 + y_1 = x_2 + y_2$. Determine the partition of $A \times A$ induced by R. <u>PART V</u>	[10]	CO6	L3
9	Let $A = \{1, 2, 3, 4, 6, 12\}$. On A, the relation R is defined by 'aRb iff a divides b'. Prove that R is a partial order on A. Draw the Hasse diagram for this relation.			
	OR			
10	Let A={2, 3, 4, 6, 8, 12, 24} and R denote the partial order of divisibility, ie., xRy iff x divides y. Draw the Hasse diagram and Find the (i) least element (ii) greatest element (iii) minimal elements (iv) maximal elements	[10]	CO6	L2

$$MFCA - 2 g(MCA1)$$

$$IA T I - Math 2024$$

$$I. A = \{1, 2, 3, 4\}$$

$$R = \{(1, 0), (1, 2), (1, 3), (1, 4), (2, 4), (2, 4), (2, 3), (4, 4)\}$$

$$M(R) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Vortex In-deg Out-deg$$

$$I = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\frac{Vortex In-deg Out-deg}{I}$$

$$\frac{1}{2} = 2 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 2$$

$$3 = 1$$

$$4 = 3 = 1$$

$$3. M_{R} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$M_{S} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$R = \{(0, a), (a, c), (b, a), (c, b)\}$$

$$S = \{(a, c), (b, b), (b, c), (c, a)\}$$

$$i) RUS = \{(a, c), (b, b), (b, c), (b, b), (b, c), (c, a), (c, b)\}$$

$$ii) RUS = \{(a, c), (b, b), (b, c), (c, b), (b, c), (c, c), (c, c)\}$$

$$ii) RUS = \{(a, c), (b, b), (c, b), (b, b), (b, c), (c, a), (c, c)\}$$

$$iii) RUS = \{(a, c), (b, b), (c, b), (c, b), (b, c), (c, a), (c, c)\}$$

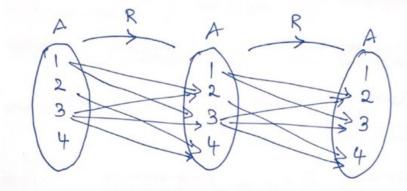
$$iii) RUS = \{(a, c), (b, b), (c, b), (c, b), (b, c), (c, a), (c, c)\}$$

$$M(RUS) = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$M(RUS) = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$M(RUS) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$M(\overline{R}) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} , M(S^{C}) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$



4.

 $R^{2} = ROR = \{ (1,4), (1,2), (1,3), (3,4), (3,2), (3,3) \}$ $M(R^{2}) = \begin{cases} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{cases}$

$$[M(R)]^{2} = M(R) \times M(R)$$

$$= \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Hence, **B** [M(R)]^{2} = M(R^{2})

5. A relation R on a set A is said to be (i) replexive if (a, a) ER, taEA. (i)).symmetric if whenever (a, b) ER they(b,a) ER (ili) anti-symmetricij (a,b) ER & (b,a) ER => a=b. (IV) transitive if whenever (a,b) ER & (b,c) ER => (a,c) ER. (v) Given a non-empty set A, suppose we have non-empty subsets of A, say A1, A2, ... Ax such that (i) $A_1 \cup A_2 \cup \cdots \cup A_k = A$ (ii) $A_j \cap A_j = \phi$ then $P = \{A_1, A_2\}$ is called partition of the set A. Eg: - (1) Ret A = {1,2,3} $R_1 = \{(1, 1), (1, 2), (2, 2), (3, 3)\}$ is suffexive. $R_2 = \{(1, 2), (2, 1), (2, 2)\}$ is symmetric. $k_3 = \{(1,2), (2,3), (3,3)\}$ is anti-symmetric. Ry = {(1,1), (1,2), (2,2), (2,2) } is transitive. $\{ A_1 = \{ 1, 3 \}, A_2 = \{ 2 \} \}$ $P = \{A_1, A_2\}$ is positifion of A as $A_1 \cup A_2 = A$ $A_1 \cap A_2 = \phi$

T) Let $A = \{a, b, c, d, e\}$

Since a & b belongs to one block, we have a Ra, a Rb, b Ra, b Rb.

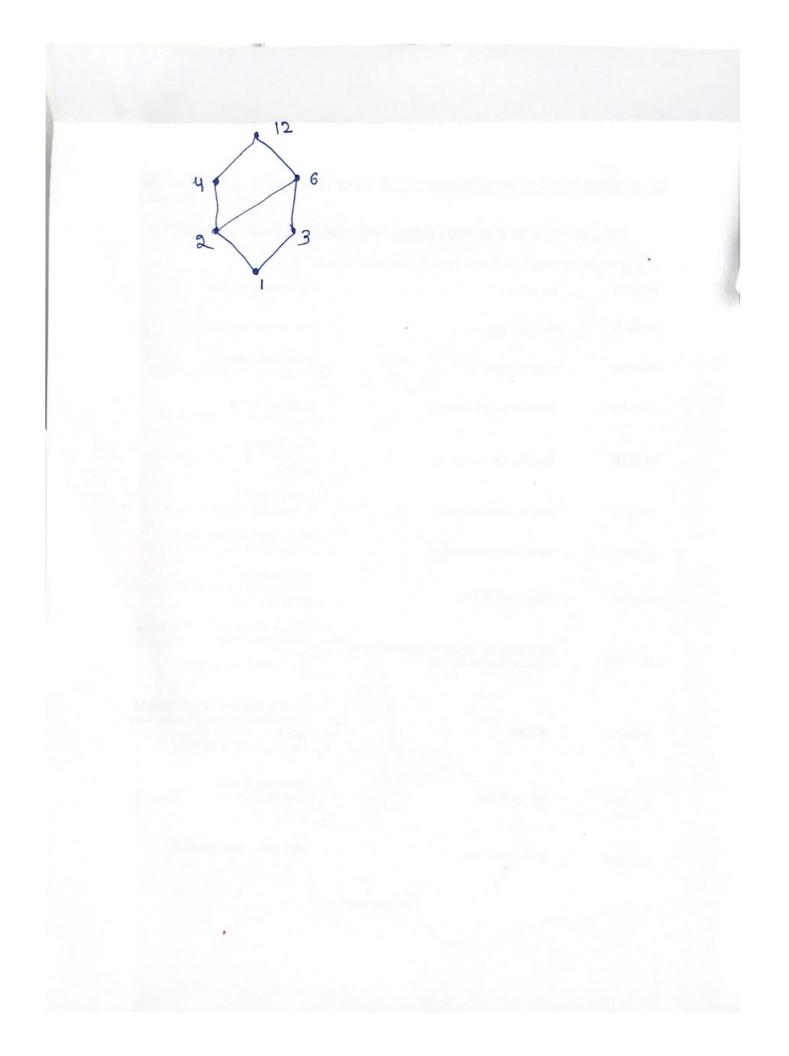
Since c & d are in some block, we have cRc. cRd,

dRc. dRc.

Since e is in one block, we have e Re.

Thus, the equivalence relation inducing the given partition 18 $R = \{Ca,a\}, Ca,b\}, Cb,a\}, Cb,b\}, Cc,c\}, Cc,d\}, Cd,c], (d,d)$ (ce,e)}

9) Let $A = \{1, 2, 3, 4, 6, 12\}$ $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (1, 12), (2, 3), (2, 4), (2, 6), (2, 12), (2, 12)\}$ R_{4} [exite: Welt a dividus a $\neq a \in A$ $\Rightarrow ca, a \in R \Rightarrow R$ is suffexive. Antisymmetric: Let $(a,b) \in R \Rightarrow a dividus b$ $But b doesn't dividue a <math>\Rightarrow (b, a) \notin R$. $\therefore R$ is anti-symmetric $\forall a \neq b$ $Taansitive: Let (a,b) \in R & (b,c) \in R$ $\Rightarrow a dividus b & (b, c) \in R$ $\Rightarrow a dividus b & (b, c) \in R$ $\Rightarrow a dividus b & (b, c) \in R$ $\Rightarrow a dividus b & (b, c) \in R$ $\Rightarrow a dividus c$. $\Rightarrow a dividus c$. $\Rightarrow (a,c) \in R \Rightarrow R is transitive.$



$$\begin{aligned} & A = \{1, 2, 3, 4, \} \\ & B = \{2, 5\} \\ & C = \{3, 4, 7\} \\ & (i) A \times B = \{(1, 2), (1, 5), (2, 2), (2, 5), (3, 2), (3, 5), (4, 2), (4, 5)\} \\ & (ii) B \times A = \{(2, 1), (2, 2), (2, 3), (2, 4), (5, 1), (5, 2), (5, 3), (5, 4)\} \\ & (iii) A \times A = \{(1, 1), (1, 2), (1, 3), (1, 4), (5, 1), (5, 2), (5, 3), (5, 4)\} \\ & (iii) A \times A = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 7)\} \\ & (A \times C) = \{(1, 3), (1, 4), (1, 7), (2, 3), (2, 4), (2, 17), (3, 3), (3, 4), (3, 7), (4, 3), (4, 4), (4, 7), (5, 3), (5, 4), (5, 7)\} \\ & (A \times C) \cup (B \times C) = \{(1, 3), (1, 4), (1, 7), (2, 3), (2, 4), (2, 7), (3, 3), (3, 4), (3, 7), (4, 3), (4, 4), (4, 7), (5, 3), (5, 4), (5, 7)\} \\ & (V) A \cup B = \{1, 2, 3, 4, 5\} \\ & (A \cup B) \times C = \{(1, 3), (1, 4), (1, 7), (2, 3), (2, 4), (2, 7), (3, 3), (3, 4), (3, 7), (4, 3), (2, 4), (5, 7), (5, 7), (5, 7), (4, 3), (2, 4), (5, 7), (5, 7), (4, 3), (2, 4), (2, 7), (5, 3), (5, 4), (5, 7), (4, 3), (3, 4), (3, 7), (4, 3), (2, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (4, 3), (2, 4), (2, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7), (5, 7), (5, 7), (5, 3), (5, 4), (5, 7),$$

N./WID

6.
$$R = \{(1,1), (1,6), (1,11), (2,2), (2,7), \dots, (12,12)\}$$

Rylexive: lakt $\chi - \chi = 0$ is a multiple of 5.
 $\therefore (\chi, \chi) \in R, \quad \forall \quad \chi \in A$.
 $\therefore R \text{ is suflexive.}$
Symmetric: $I_{1}(\chi, \chi) \in R$
 $\Rightarrow \chi - \chi \text{ is a multiple of 5.}$
 $\Rightarrow \chi - \chi \quad (\chi, \chi) \in R$
 $\Rightarrow \chi - \chi \quad (\chi, \chi) \in R$
 $\Rightarrow \chi - \chi \quad (\chi, \chi) \in R$
 $\therefore R \text{ is symmetric.}$
Taansittve: $I_{1}(\chi, \chi) \in R, (\chi, \chi) \in R$
 $\Rightarrow \chi - \chi = 5K, (\chi - \chi) \in R$
 $\Rightarrow \chi - \chi = 5K, (\chi - \chi) \in R$
 $\Rightarrow \chi - \chi = 5K, (\chi - \chi) \in R$
 $\Rightarrow \chi - \chi = 5K, (\chi - \chi) = 5K_{2}$
 $\Rightarrow \chi - \chi = 5(K_{1} + K_{2}) \quad which is a multiple of 5$
 $\Rightarrow (\chi, \chi) \in R \quad (\chi - \chi) \in R \text{ is smansitive.}$

 $[(1,1)] = \{(1,1)\} = A_1$ $[(1,2)] = \{(1,2), (2,1)\} = A_2$ 8. $[(1,3)] = \{(1,3), (3,1), (2,2)\} = A_3$ $[(1,4)] = \{(1,4), (4,1), (2,3), (3,2)\} = Ay$ $[(1,5)] = \{(1,5), (5,1), (2,4), (4,2), (3,3)\} = A_5$ $[(2,5)] = \{(2,5), (5,2), (3,4), (4,3)\} = A_{\epsilon}$ [(3,5)] = {(3,5), (5,3), (4,4)} = A707 21 A $\begin{bmatrix} (4,5) \end{bmatrix} = \{(4,5), (5,4) \} = A_8 \text{ of } (4,5) \end{bmatrix} = \{(5,5) \} = A_9 \text{ of } (5,5) \} = A$

