CMR

INSTITUTE OF TECHNOLOGY

USN
Internal Assessment Test | — March 2024
Sub: Data Structures SUb_ 22MCA13
Code:
Date: 13/03/2024 Duration: | 90 min’s mg’r‘ks_ 50 | Sem: | I | Branch: | MCA
Note : Answer FIVE FULL Questions, choosing ONE full question from each Part.
OBE
PART I MARKS
CO | RBT
1 | What are data structures? Explain the classification of data structures with a neat [10]
diagram. Col| L1
OR
2 Write an algorithm to convert infix to prefix expression and explain the process 1 o1l 11
with an example.
PART II [5+5]
3 |Write a program to evaluate postfix expression. Evaluate the following expression Cco2| L2
623 +-382/+*2"3+ OR
4 |Convert the following infix expression to postfix expression. [5+5]
1. A*B/C+(B+C)*D 2. (A+B"C)/D+E Cco2| L2
PART IlI
5 |With program explain the push and pop operations of Stack and list any five applications co2| L2
of stack. OR
[10]
6 |Writea C program to convert infix to postfix Expression with example.
co2| L2
[10]
PART IV
7 |What is recursion? Write a C program to find GCD of two numbers using [10] co2| L2
recursion. Explain the process with an example. OR
a. Write an algorithm to convert postfix to infix expression
8 [b. Convert the following infix expression to Prefix [10] coz| L3
K+L-M*N+ (O™P)*W/UNV*T+Q
PART V
9 |Write an Algorithmto find factorial of a given number n. Trace the same for n=4 by coz2| L2
showing Recursive tree. OR (1]
10 |Write a C program to implement Tower of Hanoi problem using recursion and trace the [5+5] co2| L3
output for 3 disks.

Page 1 of 21

1. What are data structures? Explain the classification of data structures

with a neat diagram.

Data Structure is used for organizing the data in memory. There are various ways of
organizing the data in the memory, for eg. array, list, stack, queue, and many more. A
data structure is a collection of data values and the relationships between them. Data
structures allow programs to store and process data effectively. There are many
different data structures, each with its own advantages and disadvantages. Some of the
most common data structures are arrays, lists, trees, and graphs. It is a set of
algorithms that can be used in any programming language to organize the data in the
memory.

1.1. Introduction to Data Structures:

Data structure is a representation of logical relationship existing between individual elements of
data. In other words, a data structure defines a way of organizing all data items that considers
not only the elements stored but also their relationship to each other. The term data structure is
used to describe the way data is stored.

To develop a program of an algorithm we should select an appropriate data structure for that
algorithm. Therefore, data structure is represented as:

Algorithm + Data structure = Program

A data structure is said to be linear if its elements form a sequence or a linear list. The linear
data structures like an array, stacks, queues and linked lists organize data in linear order. A data
structure is said to be non linear if its elements form a hierarchical classification where, data
items appear at various levels.

Trees and Graphs are widely used non-linear data structures. Tree and graph structures
represents hierarchial relationship between individual data elements. Graphs are nothing but
trees with certain restrictions removed.

Data structures are divided into two types:

. Primitive data structures.
. Non-primitive data structures.

Primitive Data Structures are the basic data structures that directly operate upon the machine
instructions. They have different representations on different computers. Integers, floating point
numbers, character constants, string constants and pointers come under this category.

Non-primitive data structures are more complicated data structures and are derived from
primitive data structures. They emphasize on grouping same or different data items with
relationship between each data item. Arrays, lists and files come under this category. Figure

1.1 shows the classification of data structures.

Page 2 of 21

https://www.mygreatlearning.com/blog/what-is-an-array-learn-more-in-one-read/
https://www.mygreatlearning.com/blog/understanding-trees-in-data-structures/
https://www.mygreatlearning.com/blog/representing-graphs-in-data-structures/

DataStructures

PrimitiveDataStructures No n-PrimitiveData Structure
Y \

Y Y ¥ Y] Y Y

Integer| | Float Char Point ers Array s List s File s
Y
Line ar Lists No n-Line ar List s
| ‘I{
Stacks ||Queues| |Graphs T rees

Fig ure 1. 1. C lass if icat io n of Da t a St ruct ures

1.2, Data structures: Organization of data

The collection of data you work with in a program have some kind of structure or organization.
No matte how complex your data structures are they can be broken down into two fundamental
types:

. Contiguous

. Non-Contiguous.

In contiguous structures, terms of data are kept together in memory (either RAM or in a file). An
array is an example of a contiguous structure. Since each element in the array is located next to
one or two other elements. In contrast, items in a non-contiguous structure and scattered in
memory, but we linked to each other in some way. A linked list is an example of a non-contiguous
data structure. Here, the nodes of the list are linked together using pointers stored in each node.
Figure 1.2 below illustrates the difference between contiguous and non- contiguous structures.

1 2 3 1——)|2 > 3

(a) Contiguous (b) non-contiguous

Figure 1.2 Contiguous and Non-contiguous structures compared

Page 3 of 21

2. Write an algorithm to convert infix to prefix expression and

explain the process with an example

Steps to convert infix expression to prefix

. First, reverse the given infix expression.

. Scan the characters one by one.

. If the character is an operand, copy it to the prefix notation output.

. If the character is a closing parenthesis, then push it to the stack.

. If the character is an opening parenthesis, pop the elements in the stack
until we find the corresponding closing parenthesis.

. If the character scanned is an operator

e WN =

o]

. [Ifthe operator has precedence greater than or equal to the top of the
stack, push the operator to the stack.

. Ifthe operator has precedence lesser than the top of the stack, pop the
operator and output it to the prefix notation output and then check the
above condition again with the new top of the stack.

7. After all the characters are scanned, reverse the prefix
notation output.

(@+(b*c)/(d—e)) =+al*bc-de
NOTE: scan the infix string in reverse order.

SYMBOL | PREFIX OPSTACK
) Empty)

) Empty)

e e))

- e))-

d de))-

(-de)

/ -de)/

) -de)/)

G c-de)/)

8 c-de))*

b bc-de))*

(*bc-de)/

+ [*bc-de)+

a a/*bc-de)+

(+a/*bc-de Empty

Page 4 of 21

3. Write a program to evaluate postfix expression. Evaluate the following

expression
623+-382/+*2"3+

Evaluate the following postfix expression: 6 23 + -3 82/ ++*2T3 %

SYMBOL OPERAND 1 QPERAMND 2 WALLIE | STACK
& 6
2 6, 2
3 6,2 3
+ Fi 3 5 6, 5
. [5 1 1
3 & 5 1 1,3
8 &] 1 1,3,
2 & 5 1 1, 3,8, 2
] B p 4 1,3,
+ 3 4 7 1,7
. 1 7 7 7
2 i 7 7 7. 2
t 7 z a9 a9
3 7 2 49 49, 3
+ 49 3 52 52

Page 5 of 21

Implement a Program in C for evaluating a Postfix Expression.

#include<stdio.h>
int stack[20];

int top = -1;

void push(int x)

{

stack[++top] = x;
y

int pop()

{

return stack[top--];

;

int main()

{

char exp[20];
char *e;

int nl,n2,n3,num;
printf("Enter the expression :: ");
scanf("%s",exp);
e = exp;
while(*e 1="0")
{

if(isdigit(*e))

{

num = *e - 48;
push(num);

h

else

{

nl = pop();

n2 = pop();
switch(*e)

{

case t':

{

n3 =nl +n2;
break:

h

Case -¢

Page 6 of 21

!

n3 =n2-nl;
break;

[}

)

case "*':

)

]

n3 =nl * n2:
break;

L]

|

case'/":

!

1
n3=n2/nl;
break:

1

)

1

]
push(n3);
1

f
e++;
|

m

!
printf("\nThe result of expression %s = %d\n\n" exp,pop());

return 0;

1
|

Output:
Enter the Expression: 234+*
The result of expression 234+* = 14

4. Convert the following infix expression to postfix and prefix expression.

1. A*BIC+(B+C)*D 2. (A+B"C)/D+E

Solution:
1. AB*C/BC+D*+ +*A/BC*+BCD
2. ABCMD/E+ [+ABC+DE

Page 7 of 21

5. With program explain the push and pop operations of Stack and list
any five applications of stack.

Stack:

There are certain situations in computer science that one wants to restrict insertions
and deletions so that they can take place only at the beginning or the end of the list,
not in the middle. Two of such data structures that are useful are: Stack and Queue

Stack Definition

A stack is a list of elements in which an element may be inserted or deleted only at
one end, called the top of the stack. Stacks are sometimes known as LIFO (last in,
first out) lists.

As the items can be added or removed only from the top i.e. the last item to be
added to a stack is the first item to be removed. The two basic operations
associated with stacks are:

Push: is the term used to insert an element into a stack.
e Pop: is the term used to delete an element from a stack.
e “Push” is the term used to insert an element into a stack.

“Pop” is the term used to delete an element from the stack. All insertions and
deletions take place at the same end, so the last element added to the stack will be
the first element removed from the stack. When a stack is created, the stack base
remains fixed while the stack top changes as elements are added and removed. The
most accessible element is the top and the least accessible element is the bottom of
the stack.

Page 8 of 21

Representation and Operations:

Let us consider a stack with 6 elements capacity. This is called as the size of the
stack. The number of elements to be added should not exceed the maximum size of
the stack. If we attempt to add new element beyond the maximum size, we will
encounter a stack overflow condition. Similarly, you cannot remove elements
beyond the base of the stack. If such is the case, we will reach a stack underflow
condition. When an element is added to a stack, the operation is performed by
push(). Figure 4.1 shows the creation of a stack and addition of elements using
push()

TOP

33
TOP

22 22

TOP

11 11 11

(=] - N w -
o — N w b
S = N w

(=] — N w i

TOP

Empty Insert Insert Insert
Stack 11 22 33

Figure 4.1. Push operations on stack

When an element is taken off from the stack, the operation is performed by pop(). Figure
4.2 shows a stack initially with three elements and shows the deletion of elements using

pop().
4 4 4 4
—»
TOP 3 3 3 3
33 >
2 TOP 2 2 2
—p
22 1 22 1 TOP 1 1
11 o 11 o 11 o TO.P 0
Initial POP POP POP
Stack
Empty
Stack

Figure 4.2. Pop operations on stack

Applications of Stack:

1. Stack is used by compilers to check for balancing of parentheses,
brackets and braces.

2. Stack is used to evaluate a postfix expression.

3. Stack is used to convert an infix expression into postfix/prefix form.

4. In recursion, all intermediate arguments and return values are stored on
the processor’s stack.

5. During a function call the return address and arguments are pushed onto
a stack and on return they are popped off.

Page 9 of 21

6. Write a C program to convert infix to postfix Expression with example.

Infix to postfix Program

Code:

#include<stdio.h>
#include<ctype.h>
char stack[100];
int top = -1;

void push(char x)
{

|

stack[++top] = x;

char pop()
{
if(top ==-1)
return -1;
else
return stack[top--];
|
int priority(char x)
{
if(x ="(")
return 0;
if(x ="+ x==")
return 1;
if(x =="*"|| x =")
return 2;
return 0;
\
i
int main()
{
char exp[100];
char *e, x;

printf("Enter the expression : ");
scanf("%s" exp);
printf("\n");

Page 10 of 21

e = exp;
while(*e '="0")

1
if(isalnum(*e))
printf("%c ", *e);
else if(*e ="(")
push(*e);
else if(*e =")")
{
while((x = pop()) '="(")
printf("%c ", X);
f
else
{
while(priority(stack[top]) == priority(*e))
printf("%c ",pop());
push(*e);
h
et+;
J
while(top !=-1)
{
printf("%c ",pop());
treturn 0;
y
Output:
Enter the Expression: a+b*c
abc*+

Example Expression:

Convert the following infix expression A + B * C - D / E * H into its equivalent postfix
expression.

SYMBOL | POSTFIX STRING STACK REMARKS
A A

+ A +

B AB -

- AB +*

C ABC +*

- ABC* + -

D ABC*+D -

/ ABC*+D -/

E ABC*+DE -/

* ABC*+DE/ -%

H ABC*+DE/H -%

End of The input is now empty. Pop the output symbols from
string ABC*+DE/H*- the stack until it is empty.

Page 11 of 21

7. What What is recursion? Write a C program to find GCD of
two numbers using recursion. Explain the process with an
example.
Recursion:
Introduction to Recursion: A function is recursive if a statement in the body of the function calls

itself. Recursion is the process of defining something in terms of itself. For a computer language to
be recursive, a function must be able to call itself.

fuvoka The) &
b cliaeat Meousidon £~ A Reauwdhe éuuoﬂbu Hicg Tuvoke J

sgd to hewe el Heewsalon .

g fur e Cut o, % b)

¢ (J’J (b= =0)

Hedurn @,

Ehcé) 8
3 qetumy Cep Ch, %4 b)

*?“A:M Weowuton {~ A awd:feu whid, Coudedy a (it to

CLicotsen d\;ucﬂ’w (,U('L[ch(?Lq tutew (allu @'va@a‘w\ew AUMCQGM

§ Soem & fwxﬂwﬁ catty e d'”wr Juate, G Catted e

?L‘A{q(u} HLLuHLISs,

G Vold waﬁ

Y
;SCL‘OMJ(J
)
Veod Sweond() Void Hbrd()
s {
Ldnd €)1 .
’J H ’ A?u_& C)’
5 !

Page 12 of 21

Page 13 of 21

#include<stdio.h>

#include<math.h>

unsigned int GCD(unsigned i, unsigned j);
int main(){

int a,b;

printf("'Enter the two integers:

");

scanf(*'%d%d",&a,&b);

printf(""GCD of %d and %d is %0d ",a,b,GCD(a,b));
return O;

}

/* Recursive Function*/

unsigned int GCD(unsigned i, unsigned j){
if(j>i)

return GCD(j,i);

return i;
else
return GCD(},i%j);

Factarial of a Number using Recursion

n= &
Baze Canditian : f{r==1|| n==0) retum 1;

fact|s) ¥ [120]

v

seburn 50 fact|s)

'

rewam &4 facad|
returm 3 fachi2)

et 2 Fact[T)

+

L LT L]
Hence, Factorial of 5 & 120

8. a. Write an algorithm to convert postfix to infix expression

b. Convert the following infix expression to Prefix K+L-M* N + (O"P) *
W/UN*T+Q

Page 14 of 21

Steps to Convert Postfix to Infix :

Approach

For converting Postfix to infix we use a stack . The stack helps us store the
operands. Whenever an operator is found , we pop two operands from the
stack and push a new operand , which is the result of the current operator on
the popped operands, into the stack with parenthesis . The final element at
the top of the stack will be our infix expression .

Algorithm

. Scan all symbols one by one from left to right in the given postfix expression .
. If the reading symbol is an operand , push it into the stack .

. If the reading symbol is an operator, then a. Pop two expression from the
stack , operand1 and operand2 , perform operation with respect to symbol
scanned.(operand2

b. Push “(operand2 operand1 “)"into the stack

. If there is no symbol left then stop the process. Top of the stack will have the
required infix expression .

NOTE : ‘+' denotes the concatenation of strings .

Page 15 of 21

Conversion of Infix to Prefix using Stack

K+L-M*N+ (OAP)*"W/UN*T+Q

The Reverse expression would be:

Q+T*V/UW *)PAO(+ N*M - L + K

To obtain the prefix expression, we have created a table that consists of three columns,
i.e., input expression, stack, and prefix expression. When we encounter any symbol, we

simply add it into the prefix expression. If we encounter the operator, we will push it into
the stack.

Input expression Stack Prefix expression
Q Q
+ + Q
7 i + QT
= +% QT
v + QTv
/ S 5 QTVv
U +*/ QTVvVU
/ +*// QTVU
w +*// QTVUWw
= +*/I* QTVUW
) +4/1*) QTVUW
P +*1I*) QTVUWP
A B QTVUWP
O % 2!) QTVUWPO
(+*I* QTVUWPO?
+ ++ QTVUWPOM/I*
N ++ QTVUWPOM/*N
* b QTVUWPOM/I*N
M i B QTVUWPOM/I*NM
< 4= QTVUWPOM/I*NM*
L ++- QTVUWPOM/I*"NM*L
+ +H-+ QTVUWPOM/I*NM*L
K ++-+ QTVUWPOM/*NM*LK

QTVUWPOM /A NM*LK+-++

The above expression, i.e., QTVUWPOM//*"NM*LK+-++, is not a final expression. We
need to reverse this expression to obtain the prefix expression. ++-
+KL*MN*//*AOPWUVTQ

Page 16 of 21

9. Write an Algorithm to find factorial of a given number n. Trace
the same for n=4 by showing Recursive tree.

#include <stdio.h>
int factorial (int);
main()
{
int num, fact;
printf (“"Enter a positive integer value: ");
scanf ("%d", &num);
fact = factorial (num);
printf ("\n Factorial of %d =%5d\n", num, fact);

}
int factorial (int n)
{
int result;
if(n==0)
return (1);
else

result = n * factorial (n-1);

return (result);

A non-recursive or iterative version for finding the factorial is as follows:
factorial (int n)

inti, result =1;
if (n ==0)

return (result);

else

{ for (i=1; i<=n; i++)
result = result * i;

s

return (result);

b

The operation of the non-recursive version is clear as it uses a loop starting at 1 and
ending at the target value and progressively multiplies each number by the moving
product.

When a function calls itself, new local variables and parameters are allocated storage on
the stack and the function code is executed with these new variables from the start. A
recursive call does not make a new copy of the function. Only the arguments and
variables are new. As each recursive call returmns, the old local variables and parameters
are removed from the stack and execution resumes at the point of the function call inside
the function.

When writing recursive functions, you must have a exit condition somewhere to force the
function to return without the recursive call being executed. If you do not have an exit
condition, the recursive function will recurse forever until you run out of stack space and
indicate error about lack of memory, or stack overflow.

Page 17 of 21

Recursion Factorials:

SI=5S*4l =5*___= factr(5) = 5 * factr(4) =
41 =4 %31 =4~ = factr(4) = 4 * factr(3) = __

3] =32t = 3 " = _ factr(3) = 3 * factr(2) =
21 =2 * 1l =2 * = factr(2) = 2 * factr(1) = __

11 =1*0!=1* = factr(1) = 1 * factr(0) = _
0! = 1 factr(Q) = _
Sl = S*%4| = 574°3] = 5%°4°3%21 = 5°4*3*2%1! = 5°4°3°2*1*0! = 5°4*3~2*1*1
=120

We define 0! to equal 1, and we define factorial N (where N > 0), to be N * factorial (N~
1). All recursive functions must have an exit condition, that is a state when it does not
recurse upon itself. Our exit condition in this example is when N = 0.

10. Write a C program to implement Tower of Hanoi problem using
recursion and trace the output for 3 disks.

Tower of Hanoi program in C using Recursion

#include <stdio.h>
void toH(int n, char source, char Dest, char Aux)
{
if (n==1)
{printf("\n Move disk 1 from tower %c to tower %c",source ,Dest);
return;
b

toH(n-1, source, Aux, Dest);
printf(*\n Move disk %d from tower %c to tower %c", n, source, Dest);
toH(n-1, Aux, Dest,source);

}

int main()

{
int no_of disks ;
printf("Enter number of disks: ");
scanf("%d", &no_of _disks);
toH(no_of _disks, 'S','D','A");
return O;

Page 18 of 21

. y
= o il A
AL tower (n-t

L2 TR U
DyYInt
T

| ;v%‘}"j‘wdu'

Page 19 of 21

Page 20 of 21

Page 21 of 21

