
Page 1 of 16 

CMR 

INSTITUTE OF                        

TECHNOLOGY 

                                  

 

USN           

Internal Assessment Test 1 – March  2024 

Sub: Design and Analysis of Algorithms Sub Code: 22MCA15 

Date: 14.03.24 Duration: 90 min’s Max Marks: 50 Sem: I Branch: MCA 

 

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module 
 

  

            PART I MARKS 
OBE 

CO RBT 

1  What is an algorithm? What are the characteristics of a good algorithm? Explain 

with example of GCD of two numbers. 

OR 

[2+3+5] 

CO1 L1 

2   Describe the various asymptotic notations with a neat diagrams and examples. [10] CO2 L1 

 

3           

PART II 

Explain the methods to analyze non-recursive algorithms with examples. 

OR 

[10] 

CO2 L2 

4 

       

Compare the order of growth of the following using limits: log2 n and √n [10] 
CO2 L4 

 

5   

PART III 

Write an algorithm for Quick sort. Explain with an example and derive the 

time complexity  

OR 

 

 

 

[5+5] 

CO3 L3 

6 Write a recursive function to implement binary search. Take an example and 

compare linear and binary search to determine which one is better in terms of time 

taken. 

[5+5] 

CO3 L3 

 

7 

PART IV 

Explain what is Divide and Conquer and what are its advantages and 

disadvantages. How is it different from Decrease and Conquer and Transform and 

Conquer 

OR 

 

[4+6] 

CO3 L3 

 

8 

Explain how Topological sort works considering the graph below as input. Write 

C code to implement the algorithm. 

 

 

[4+6] 

CO3 L3 

 

9 
PART V 

Take an example and explain how Heap sort works. Write C code to implement 

the algorithm.  

OR 

 

 

[4+6] CO3 L3 

10 Explain Strassen’s Matrix Multiplication algorithm and discuss how the algorithm 

follows divide and conquer 

[6+4] CO3 L3 

 

 

 

 

 

 

 
1.   What is an algorithm? What are the characteristics of a good algorithm? Explain 

with example of GCD of two numbers. 



Page 2 of 16 

 
An algorithm is a sequence of unambiguous instructions for solving a problem. 
i.e., for obtaining a required output for any legitimate input in a finite amount of 
time. 
Characteristics of Algorithms:  

i) Finiteness:  
An algorithm must terminate after a finite number of steps and further each step 
must be executable in finite amount of time or it terminates (in finite number of 
steps) on all allowed inputs  

ii) Definiteness (no ambiguity):  
Each step of an algorithm must be precisely defined; the action to be carried out 
must be rigorously and unambiguously specified for each case. For example: an 
instruction such as y=sqrt(x) may be ambiguous since there are two square roots 
of a number and the step does not specify which one.  

iii) Inputs:  
An algorithm has zero or more but only finite, number of inputs.  

iv) Output:  
An algorithm has one or more outputs. The requirement of at least one output is 
obviously essential, because, otherwise we cannot know the answer/ solution 
provided by the algorithm. The outputs have specific relation to the inputs, 
where the relation is defined by the algorithm.  

v) Effectiveness:  
An algorithm should be effective. This means that each of the operation to be 
performed in an algorithm must be sufficiently basic that it can, in principle, be 
done exactly and in a finite length of time, by person using pencil and paper. 
Effectiveness also indicates correctness, i.e. the algorithm actually achieves its 
purpose and does what it is supposed to do.  
Example:  
Below is given the psuedocode of the algorithm to find the GCD of two numbers  

 
 
Considering the above algorithm, it is finite. Though we do not offer a proof here, 
it can be seen that the pair of m and n after every step decreases. If we start with 
m and n as positive numbers then eventually the value of n has to reduce and 
become 0 thus guaranteeing termination and thus finiteness.  
Definiteness – Every step in this algorithm is well specified and has no ambiguity  
Inputs / Ouput – The algorithm has two inputs and one output – gcd.  
Effectiveness – Each step is presented in sufficient detail and the result is a 
correct computation of GCD.  
 

 
2.   Describe the various asymptotic notations with a neat diagrams and examples. 

 
Different Notations 

1. Big oh Notation 



Page 3 of 16 

2. Omega Notation 
3. Theta  Notation 

 
1. Big oh (O) Notation : A function t(n) is said to be in O[g(n)], t(n)  ∈ O[g(n)] 

, if t(n) is bounded above by some constant multiple of g(n) for all large n  
ie.., there exist some positive constant c and some non negative integer no 
such that t(n) ≤ cg(n) for all n≥no.  

            Eg. t(n)=100n+5  express in O notation 
                           100n+5   < = 100n + n       for all n>=5  
                                           < =  101 (n2)  
                          Let g(n)= n2    ;   n0=5   ; c = 101 
         i.e     100n+5    <=101 n2 
                              t(n) <= c* g(n)   for all n>=5 
There fore  ,         t(n) ∈ O(n2) 
 

 
2. Omega(Ω) -Notation:  

Definition: A function  t(n) is said to be in Ω[g(n)], denoted   t(n)  ∈ Ω[g(n)] , if t(n) 
is bounded below by some positive constant multiple of g(n) for all large n, ie., 
there exist some positive constant c and some non negative integer n0  such that  
              t(n) ≥ cg(n) for all n ≥ n0.  
For example: 
              t(n) = n3  ∈ Ω(n2),  
               n3 ≥ n2   for all     n ≥ n0. 
   we can select, g(n)= n3  ,  c=1  and   n0=0  
                         t(n)  ∈ Ω(n2),  

                              
 

3. Theta (θ) - Notation:  
Definition: A function t(n) is said to be in θ [g(n)], denoted t(n) ∈ θ (g(n)), if t(n) is 
bounded both above and below by some positive constant multiples of g(n) for 
all large n ,  ie., if there exist some positive constant c1 and c2 and some 
nonnegative integer n0 such that c2g(n) ≤ t(n) ≤ c1g(n) for all   n ≥ n0. 
For example 1:  
             t(n)=100n+5  express in θ notation 
                 100n <= 100n+5  <= 105n    for all n>=1 
             c1=100;     c2=105;  g(n) = n;   
            Therefore ,           t(n) ∈ θ (n) 



Page 4 of 16 

 

                 `  
 
Describe various Basic Efficiency classes 
 Sol: The time complexity of a large number of algorithms fall into only a few 
classes. These classes are listed in Table in increasing order of their orders of 
growth. Although normally we would expect an algorithm belonging to a lower 
efficiency class to perform better than an algorithm belonging to higher efficiency 
classes, theoretically it is possible for this to be reversed. For example if we 
consider two algorithms with orders (1.001)n and n1000. Then for lot of values of 
n (1.001)n would perform better but it is rare for an algorithm to have such time 
complexities.  

Class   Name   Comments  

 1   Constant   Constant time algorithm execute number of steps independent of 
input size/values. E.g. finding sum of two numbers.  

 logn   Logarithmic   Algorithms in this category are very ef 
ficient e.g. binary search.  

 n   Linear   Algorithms that scan a list of size n, eg., sequential search, finding 
the max/min element in an array etc.  

 nlogn   nlogn   Many divide & conquer algorithms including mergersort quicksort 
fall into this class.  

 n2   Quadratic   Characterizes with two embedded loops, mostly sorting and 
matrix operations. E.g. adding two square matrices, bubble sort.  

 n3   Cubic   Efficiency of algorithms with three embedded loops. For example : 
matrix multiplication , Floyd Warshall’s algorithms  

 2n   Exponential   Algorithms that generate all subsets of an n-element set .  

 n!   factorial   Algorithms that generate all permutations of an n-element set e.g. 
Travelling Salesman problems  

 



Page 5 of 16 

             Plot of function Values 
 

 

3. Explain the methods to analyze non-recursive algorithms with examples. 
 
General Plan for Analyzing Efficiency of Nonrecursive Algorithms  
1. Decide on a parameter (or parameters) indicating an input's size.  
2. Identify the algorithm's basic operation. (As a rule, it is located in its innermost  
loop.)  
3. Check whether the number of times the basic operation is executed depends only  
on the size of an input. If it also depends on some additional property, the worst-  
case, average-case, and, if necessary, best-case efficiencies have to be  
investigated separately.  
4. Set up a sum expressing the number of times the algorithm's basic operation is  
executed.  
5. Using standard formulas and rules of sum manipulation either find a closed-form formula for 
the count or, at the very least, establish its order of growth. 
 

For example Consider the element uniqueness problem: check whether all the elements in 
a given array are distinct. This problem can be solved by the following straightforward algorithm.  
 

ALGORITHM UniqueElements(A[0..n - 1])  
//Checks whether all the elements in a given array are distinct  
//Input: An array A[0..n - 1]  
//Output: Returns "true" if all the elements in A are distinct  
// and "false" otherwise.  
for i «— 0 to n — 2 do  

     for j' <- i
: 
+ 1 to n - 1 do  

          if A[i] = A[j]  
                 return false  
return true  
 

Since the innermost loop contains a single operation (the comparison of two elements), we should 
consider it as the algorithm's basic operation. There are two kinds of worst-case inputs (inputs for 
which the algorithm does not exit the loop prematurely): arrays with no equal elements and 
arrays in which the last two elements are the only pair of equal elements. For such inputs, one 
comparison is made for each repetition of the innermost loop, i.e., for each value of the loop's 
variable j between its limits i + 1 and n - 1; and this is repeated for each value of the outer loop, 
i.e., for each value of the loop's variable i between its limits 0 and n - 2. Accordingly, we get: 

 

 
 

 

 

 

 



Page 6 of 16 

4. Compare the order of growth of the following using limits: log2 n and √n 

 

 
 

5. Write an algorithm for Quick sort. Explain with an example and derive the time complexity. 
 
Algorithm Partition(A[l..r]) 

p← A[l]; i ← l; j ← r + 1  

repeat  

        repeat i ← i + 1 until A[i] ≥ p  

        repeat j ← j − 1 until A[j ] ≤ p  

        swap(A[i], A[j ])  

until i ≥ j  

swap(A[i], A[j ]) //undo last swap when i ≥ j  

swap(A[l], A[j ])  

return j 

 
Algorithm Quicksort(A[l..r])  

//Sorts a subarray by quicksort  

//Input: Subarray of array A[0..n − 1], defined by its left and right  

// indices l and r  

//Output: Subarray A[l..r] sorted in nondecreasing order  

if l<r 

         s ←Partition(A[l..r]) //s is a split position  

         Quicksort(A[l..s − 1])  

         Quicksort(A[s + 1..r]) 

 

 



Page 7 of 16 

 
 
Let us assume we have an unsorted list of n numbers that partition from the middle every time. 
So, if we form a recursion tree, at each level, there will be n comparisons. Number of levels in the 
tree will be equal to the number of times n can be divided by 2 till the result is 1. Let us say n can 
be divided by 2 k times.  
So, n/2k = 1 
K=log2n [log (base 2) n]     
So, if there are log n levels and in each level there are n comparisons, the time taken is O(nlogn). 
This is the best-case time complexity of quicksort. 
 
Now let us consider we have a sorted list on n numbers as input. Now, the partition will always 
happen from one side of the array. So, the recursion tree will grow only on one side for n levels 
and the number of comparisons will be n in first partition, (n-1) in the second and so on till 1 
comparison in the last.   
Thus, time taken is: 
n+(n-1)+(n-2)+…+2+1 
=n(n+1)/2 
 =O(n2)    
 
This is the worst case time complexity of quicksort.                                    
 

6. Write a recursive function to implement binary search. Take an example and compare linear and binary 

search to determine which one is better in terms of time taken. 

 

Recursive function pseudo code for recursive binary search: 

 

function binary_search(array, target, low, high): 

    if low > high: 



Page 8 of 16 

        return NotFound 

    else: 

        mid = (low + high) / 2 

        if array[mid] == target: 

            return mid 

        else if array[mid] > target: 

            return binary_search(array, target, low, mid - 1) 

        else: 

            return binary_search(array, target, mid + 1, high) 

 

Let's assume we have the following array: arr = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] 
 

And we want to search for the element 10. 

 

Linear Search: 

 

Start from the beginning of the array. 

Compare each element with the target until we find the element or reach the end of the array. 

Dry run for linear search: 

 

Compare 2 with 10: Not equal 

Compare 4 with 10: Not equal 

Compare 6 with 10: Not equal 

Compare 8 with 10: Not equal 

Compare 10 with 10: Found at index 4 

. 

Binary Search: 

 

Start with the middle element. 

If the middle element is the target, return its index. 

If the middle element is smaller than the target, search in the right half of the array. 

If the middle element is larger than the target, search in the left half of the array. 

Dry run for binary search: 

 

Start with the middle element 10. 

10 is equal to the target, so return its index. 

In this example, both linear and binary search found the target element. However, for small arrays like this, 

the difference in time complexity might not be apparent. Binary search shines when the array size is large 

because of its logarithmic time complexity. 

 

To truly compare the time taken, you would need to perform these searches on much larger arrays and 

measure the time it takes for each. Typically, binary search will be faster for large arrays due to its O(log n) 

time complexity, compared to linear search's O(n) time complexity. 

 

7. Explain what is Divide and Conquer and what are its advantages and disadvantages. How is it different 

from Decrease and Conquer and Transform and Conquer 

 

Divide and Conquer is a problem-solving technique that involves breaking down a problem into smaller, 

more manageable subproblems, solving these subproblems independently, and then combining their 

solutions to solve the original problem. It consists of three main steps: 

Divide: Break the problem into smaller, more manageable subproblems that are similar to the original 

problem. 

Conquer: Solve each subproblem recursively. 

Combine: Combine the solutions of the subproblems to obtain the solution for the original problem. 

Advantages of Divide and Conquer: 



Page 9 of 16 

Efficiency: Divide and Conquer algorithms often have better time complexity compared to naive 

approaches. 

Parallelism: The subproblems in Divide and Conquer can often be solved independently, making it suitable 

for parallel computing. 

Simplicity: It simplifies complex problems by breaking them down into smaller, more manageable parts. 

Modularity: Each subproblem can be solved independently, allowing for easier debugging and 

maintenance. 

Disadvantages of Divide and Conquer: 

Overhead: There can be overhead associated with dividing the problem, solving subproblems, and 

combining solutions, which may make the approach less efficient for very small problem sizes. 

Memory Usage: Recursive implementations may require additional memory due to function calls and 

maintaining the call stack. 

Complexity: Developing a Divide and Conquer algorithm may require a deep understanding of the problem 

and its substructures. 

Difference between Decrease and Conquer and Transform and Conquer: 

Decrease and Conquer: 

Decrease and Conquer is a problem-solving technique where the problem is reduced to a smaller instance 

of the same problem in such a way that the smaller instance is easier to solve than the original problem. 

This reduction is usually achieved by transforming the problem into an instance of the same problem with a 

smaller input size. Examples of Decrease and Conquer include Binary Search and Quicksort. 

Transform and Conquer: 

Transform and Conquer is a problem-solving technique where the problem is transformed into a different 

problem for which an existing efficient solution is available. The transformed problem is usually simpler or 

easier to solve than the original problem. This technique involves changing the representation or structure 

of the problem to make it more amenable to efficient solutions. Examples of Transform and Conquer 

include Radix Sort and the Fast Fourier Transform (FFT). 

 

8. Explain how Topological sort works considering the graph below as input. Write C code to implement 

the algorithm. 

 
 

 



Page 10 of 16 

 

#include<stdio.h> 

int main() 

{ 

 int a[20][20],visit[20],ind, n,i,j,flag=0,count=0; 

 printf("Enter the value of n\n"); 

 scanf("%d",&n); 

 printf("Enter the adjacency matrix\n"); 

 for(i=0;i<n;i++) 

 { 

  visit[i]=0; 

  for(j=0;j<n;j++) 

   scanf("%d",&a[i][j]); 

 } 

 while(flag==0) 

 { 

  flag=1; 

  for(i=0;i<n;i++) 

  { 

   if(visit[i]==0) 

   { 

    ind=0; 

    for(j=0;j<n;j++) 

    { 

     if(!(visit[j]==1 || a[j][i]==0)) 

     { 

      ind=1; 

      break; 

     } 

    } 

    if(ind==0) 

    { 

     //printf("%s",count==0 ?" \n topological ordering is" : " "); 

     visit[i]=1; 

     printf("%d\t",i+1); 

     flag=0; 

     count++; 

     break; 

    } 

   } 

  } 

   

 } 

 if(count!=n) 

 { 

  printf("topological order is not possible"); 

 } 

} 

 

 

 

 

 

 

 

 

 



Page 11 of 16 

9. Take an example and explain how Heap sort works. Write C code to implement the algorithm.  

 

 

 



Page 12 of 16 

 

 

 



Page 13 of 16 

 
 

 

 



Page 14 of 16 

 

#include <stdio.h>   

/* function to heapify a subtree. Here 'i' is the    

index of root node in array a[], and 'n' is the size of heap. */    

void heapify(int a[], int n, int i)   

{   

    int largest = i; // Initialize largest as root   

    int left = 2 * i + 1; // left child   

    int right = 2 * i + 2; // right child   

    // If left child is larger than root   

    if (left < n && a[left] > a[largest])   

        largest = left;   

    // If right child is larger than root   

    if (right < n && a[right] > a[largest])   

        largest = right;   

    // If root is not largest   

    if (largest != i) {   

        // swap a[i] with a[largest]   

        int temp = a[i];   

        a[i] = a[largest];   

        a[largest] = temp;   

           

        heapify(a, n, largest);   

    }   

}   

/*Function to implement the heap sort*/   

void heapSort(int a[], int n)   

{   

    for (int i = n / 2 - 1; i >= 0; i--)   

        heapify(a, n, i);   

    // One by one extract an element from heap   

    for (int i = n - 1; i >= 0; i--) {   

        /* Move current root element to end*/   

        // swap a[0] with a[i]   

        int temp = a[0];   

        a[0] = a[i];   

        a[i] = temp;   

           

        heapify(a, i, 0);   

    }   

}   

/* function to print the array elements */   



Page 15 of 16 

void printArr(int arr[], int n)   

{   

    for (int i = 0; i < n; ++i)   

    {   

        printf("%d", arr[i]);   

        printf(" ");   

    }   

           

}   

int main()   

{   

    int a[] = {48, 10, 23, 43, 28, 26, 1};   

    int n = sizeof(a) / sizeof(a[0]);   

    printf("Before sorting array elements are - \n");   

    printArr(a, n);   

    heapSort(a, n);   

    printf("\nAfter sorting array elements are - \n");     

    printArr(a, n);   

    return 0;   

}   

 

10. Explain Strassen’s Matrix Multiplication algorithm and discuss how the algorithm follows divide and 

conquer 

 

Matrix multiplication is based on a divide and conquer-based approach. Here we divide our matrix 

into a smaller square matrix, solve that smaller square matrix and merge into larger results. For 

larger matrices this approach will continue until we recurse all the smaller sub matrices. 

Suppose we have two matrices, A and B, and we want to multiply them to form a new matrix, C. 

C=AB, where all A,B,C are square matrices. We will divide these larger matrices into smaller sub 

matrices n/2; this will go on. 

 

Now from above we see: 

r=ae+bg 

s=af+bh 

t=ce+dg 

u=cf+dh 



Page 16 of 16 

Each of the above four equations satisfies two multiplications of n/2Xn/2 matrices and addition of 

their n/2xn/2 products. Using these equations to define a divide and conquer strategy we can get 

the relation among them as: 

T(N) = 8T(N/2) + O(N2) 

From the above we see that simple matrix multiplication takes eight recursion calls. 

T(n)=O(n^3) 

Thus, this method is faster than the ordinary one. 

It takes only seven recursive calls, multiplication of n/2xn/2 matrices and O(n^2) scalar additions 

and subtractions, giving the below recurrence relations. 

T(N) = 7T(N/2) + O(N2) 

Steps of Strassen’s matrix multiplication: 

1. Divide the matrices A and B into smaller submatrices of the size n/2xn/2. 

2. Using the formula of scalar additions and subtractions compute smaller matrices of size 

n/2. 

3. Recursively compute the seven matrix products Pi=AiBi for i=1,2,…7. 

4. Now compute the r,s,t,u submatrices by just adding the scalars obtained from above points. 

Submatrix Products: 

We have read many times how two matrices are multiplied. We do not exactly know why we take 

the row of one matrix A and column of the other matrix and multiply each by the below formula. 

Pi=AiBi 

=(α1ia+α2ib+α3ic)(β1ie+β2if+β2ig) 

Where a,b ,β,α are the coefficients of the matrix that we see here, the product is obtained by just 

adding and subtracting the scalar. 

 

 


