
Page 1 of 14

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 – Jan. 2024

Sub: Cloud Computing
Sub

Code:
22MCA332

Date: 18/1/2024 Duration: 90 min’s Max Marks: 50 Sem: III Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each

PART

PART I MARKS

OBE

CO

RBT

1 Briefly summarize the Cloud Computing Reference Model.

OR

[10]
CO1 L2

2 Discuss RPC and how it enables interprocess communication. [10] CO2 L3

3
PART II

What is cloud? List and explain characteristics and benefits of cloud

computing.

OR

[10]

CO1 L1

4

Discuss examples of distributed framework [10]
CO2 L2

5
PART III

What are the major distributed computing technologies that led to cloud

computing?

OR

[10]

CO1

L1

6 Compare the characteristics of parallel and distributed system. Draw and explain

the layered view of distributed system

[10]
CO2 L2

7
PART IV

Discuss hardware Architecture for Parallel Processing.

[10]

CO2

L2

8
OR

Discuss the most important model for message-based communication.

[10]

CO2

L2

9
PARTV

Discuss Service Oriented Architecture (SOA)
OR

[10]
CO2 L2

10 With a neat diagram discuss distributed object Programming Model (Distributed
Object Framework).

[10] CO2 L3

Page 2 of 14

Q1) Briefly summarize the Cloud Computing Reference Model

A fundamental characteristic of cloud computing is the capability to deliver, on demand, a variety of IT

services that are quite diverse from each other. This variety creates different perceptions of what cloud

computing is among users. Despite this lack of uniformity, it is possible to classify cloud computing services

offerings into three major categories: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and

Software-as-a-Service (SaaS).

At the base of the stack, Infrastructure-as-a-Service solutions deliver infrastructure on demand in the form

of virtual hardware, storage, and networking. Virtual hardware is utilized to provide compute on demand in

the form of virtual machine instances. These are created at users’ request on the provider’s infrastructure,

and users are given tools and interfaces to configure the software stack installed in the virtual machine. The

pricing model is usually defined in terms of dollars per hour, where the hourly cost is influenced by the

characteristics of the virtual hardware. Virtual storage is delivered in the form of raw disk space or object

store.. Virtual networking identifies the collection of services that manage the networking among virtual

instances and their connectivity to the Internet or private networks.

Platform-as-a-Service solutions are the next step in the stack. They deliver scalable and elastic runtime

environments on demand and host the execution of applications. These services are backed by a core

middleware platform that is responsible for creating the abstract environment where applications are

deployed and executed. It is the responsibility of the service provider to provide scalability and to manage

fault tolerance, while users are requested to focus on the logic of the application developed by leveraging the

provider’s APIs and libraries. This approach increases the level of abstraction at which cloud computing is

leveraged but also constrains the user in a more controlled environment.

At the top of the stack, Software-as-a-Service solutions provide applications and services on demand. Most

of the common functionalities of desktop applications—such as office automation, document management,

photo editing, and customer relationship management (CRM) software—are replicated on the provider’s

infrastructure and made more scalable and accessible through a browser on demand. These applications are

shared across multiple users whose interaction is isolated from the other users. The SaaS layer is also the

area of social networking Websites, which leverage cloud-based infrastructures to sustain the load generated

by their popularity.

Page 3 of 14

 Each layer provides a different service to users. IaaS solutions are sought by users who want to leverage

cloud computing from building dynamically scalable computing systems requiring a specific software stack.

IaaS services are therefore used to develop scalable Websites or for background processing. PaaS solutions

provide scalable programming platforms for developing applications and are more appropriate when new

systems have to be developed. SaaS solutions target mostly end users who want to benefit from the elastic

scalability of the cloud without doing any software development, installation, configuration, and

maintenance. This solution is appropriate when there are existing SaaS services that fit users needs (such as

email, document management, CRM, etc.) and a minimum level of customization is needed.

Q2) Discuss RPC and how it enables interprocess communication.

RPC is the fundamental abstraction enabling the execution of procedures on client’s request. RPC allows

extending the concept of a procedure call beyond the boundaries of a process and a single memory address

space. The called procedure and calling procedure may be on the same system or they may be on different

systems in a network. Figure 2.14 illustrates the major components that enable an RPC system. The system

is based on a client/server model. The server process maintains a registry of all the available procedures that

can be remotely invoked and listens for requests from clients that specify which procedure to invoke,

together with the values of the parameters required by the procedure. RPC maintains the synchronous

pattern that is natural in IPC and function calls. Therefore, the calling process thread remains blocked until

the procedure on the server process has completed its execution and the result (if any) is returned to the

client.

An important aspect of RPC is marshaling, which identifies the process of converting parameter and return

values into a form that is more suitable to be transported over a network through a sequence of bytes. The

term unmarshaling refers to the opposite procedure. Marshaling and unmarshaling are performed by the

RPC runtime infrastructure, and the client and server user code does not necessarily have to perform these

tasks. The RPC runtime, on the other hand, is not only responsible for parameter packing and unpacking but

also for handling the request-reply interaction that happens between the client and the server process in a

completely transparent manner. Therefore, developing a system leveraging RPC for IPC consists of the

following steps:

• Design and implementation of the server procedures that will be exposed for remote invocation.

• Registration of remote procedures with the RPC server on the node where they will be made available. •

Design and implementation of the client code that invokes the remote procedure(s).

Each RPC implementation generally provides client and server application programming interfaces (APIs)

that facilitate the use of this simple and powerful abstraction. An important observation has to be made

concerning the passing of parameters and return values. Since the server and the client processes are in two

separate address spaces, the use of parameters passed by references or pointers is not suitable in this

Page 4 of 14

scenario, because once unmarshaled these will refer to a memory location that is not accessible from within

the server process. Second, in user-defined parameters and return value types, it is necessary to ensure that

the RPC runtime is able to marshal them.

This is generally possible, especially when user-defined types are composed of simple types, for which

marshaling is naturally provided. RPC has been a dominant technology for IPC for quite a long time, and

several programming languages and environments support this interaction pattern in the form of libraries

and additional packages. For instance, RPyC is an RPC implementation for Python. There also exist

platformindependent solutions such as XML-RPC and JSON-RPC, which provide RPC facilities over XML

and JSON, respectively. Thrift [113] is the framework developed at Facebook for enabling a transparent

cross-language RPC model. Currently, the term RPC implementations encompass a variety of solutions

including frameworks such distributed object programming (CORBA, DCOM, Java RMI, and .NET

Remoting) and Web services that evolved from the original RPC concept.

Q3) What is cloud? List and explain characteristics and benefits of cloud computing.

The term cloud has historically been used in the telecommunications industry as an abstraction of the

network in system diagrams. It then became the symbol of the most popular computer network: the Internet.

This meaning also applies to cloud computing, which refers to an Internet-centric way of computing.

The Internet plays a fundamental role in cloud computing, since it represents either the medium or the

platform through which many cloud computing services are delivered and made accessible. This aspect is

also reflected in the definition given by Armbrust et al. [28]:

Cloud computing refers to both the applications delivered as services over the Internet and the hardware

and system software in the datacenters that provide those services.

This definition describes cloud computing as a phenomenon touching on the entire stack: from the

underlying hardware to the high-level software services and applications. It introduces the concept of

everything as a service, mostly referred as XaaS, 2 where the different components of a system—IT

infrastructure, development platforms, databases, and so on—can be delivered, measured, and consequently

priced as a service

This notion of multiple parties using a shared cloud computing environment is highlighted in a definition

proposed by the U.S. National Institute of Standards and Technology (NIST):

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort or service provider interaction.

According to Reese [29], we can define three criteria to discriminate whether a service is delivered in the

cloud computing style:

• The service is accessible via a Web browser (nonproprietary) or a Web services application

programming interface (API).

• Zero capital expenditure is necessary to get started.

• You pay only for what you use as you use it.

The utility-oriented nature of cloud computing is clearly expressed by Buyya et al. [30]:

A cloud is a type of parallel and distributed system consisting of a collection of interconnected and

virtualized computers that are dynamically provisioned and presented as one or more unified computing

resources based on service-level agreements established through negotiation between the service provider

and consumers.

Cloud computing has some interesting characteristics that bring benefits to both cloud service consumers

(CSCs) and cloud service providers (CSPs). These characteristics are:

• No up-front commitments

• On-demand access

• Nice pricing

• Simplified application acceleration and scalability

• Efficient resource allocation

Page 5 of 14

• Energy efficiency

• Seamless creation and use of third-party services

Q4) Discuss examples of distributed framework

Page 6 of 14

Q5) What are the major distributed computing technologies that led to cloud computing?

Three major milestones have led to cloud computing: mainframe computing cluster computing, and grid

computing.

 Mainframes. These were the first examples of large computational facilities leveraging multiple

processing units. Mainframes were powerful, highly reliable computers specialized for large data

movement and massive input/output (I/O) operations. They were mostly used by large

organizations for bulk data processing tasks such as online transactions, enterprise resource

planning, and other operations involving the processing of significant amounts of data. One of the

most attractive features of mainframes was the ability to be highly reliable computers that were

“always on” and capable of tolerating failures transparently. No system shutdown was required to

replace failed components, and the system could work without interruption. Now their popularity

and deployments have reduced, but evolved versions of such systems are still in use for transaction

Page 7 of 14

processing (such as online banking, airline ticket booking, supermarket and telcos, and government

services).

 Clusters. Cluster computing started as a low-cost alternative to the use of mainframes and

supercomputers. The technology advancement that created faster and more powerful mainframes

and supercomputers eventually generated an increased availability of cheap commodity machines

as a side effect. These machines could then be connected by a high-bandwidth network and

controlled by specific software tools that manage them as a single system. Starting in the 1980s,

clusters become the standard technology for parallel and high-performance computing. Built by

commodity machines, they were cheaper than mainframes and made high-performance computing

available to a large number of groups, including universities and small research labs. One of the

attractive features of clusters was that the computational power of commodity machines could be

leveraged to solve problems that were previously manageable only on expensive supercomputers.

Moreover, clusters could be easily extended if more computational power was required.

 Grid computing appeared in the early 1990s as an evolution of cluster computing. In an analogy to

the power grid, grid computing proposed a new approach to access large computational power,

huge storage facilities, and a variety of services. Users can “consume” resources in the same way as

they use other utilities such as power, gas, and water. Grids initially developed as aggregations of

geographically dispersed clusters by means of Internet connections. These clusters belonged to

different organizations, and arrangements were made among them to share the computational

power. Different from a “large cluster,” a computing grid was a dynamic aggregation of

heterogeneous computing nodes, and its scale was nationwide or even worldwide. Several

developments made possible the diffusion of computing grids: (a) clusters became quite common

resources; (b) they were often underutilized; (c) new problems were requiring computational

power that went beyond the capability of single clusters; and (d) the improvements in networking

and the diffusion of the Internet made possible long-distance, high-bandwidth connectivity. All

these elements led to the development of grids, which now serve a multitude of users across the

world

Q6) Compare the characteristics of parallel and distributed system. Draw and explain the layered view of

distributed system

A distributed system is the result of the interaction of several components that traverse the entire computing

stack from hardware to software. It emerges from the collaboration of several elements that—by working

together—give users the illusion of a single coherent system

Below figure provides an overview of the different layers that are involved in providing the services of a

distributed system.

Page 8 of 14

 At the very bottom layer, computer and network hardware constitute the physical infrastructure;

these components are directly managed by the operating system, which provides the basic services

for interprocess communication (IPC), process scheduling and management, and resource

management in terms of file system and local devices. Taken together these two layers become the

platform on top of which specialized software is deployed to turn a set of networked computers

into a distributed system

 The middleware layer leverages such services to build a uniform environment for the development

and deployment of distributed applications. By relying on the services offered by the operating

system, the middleware develops its own protocols, data formats, and programming language or

frameworks for the development of distributed applications. All of them constitute a uniform

interface to distributed application developers that is completely independent from the underlying

operating system and hides all the heterogeneities of the bottom layers.

 The top of the distributed system stack is represented by the applications and services designed

and developed to use the middleware. These can serve several purposes and often expose their

features in the form of graphical user interfaces (GUIs) accessible locally or through the Internet via

a Web browser.

Figure 2.11 shows an example of how the general reference architecture of a distributed system is

contextualized in the case of a cloud computing system.

Page 9 of 14

 Hardware and operating system layers make up the bare-bone infrastructure of one or more

datacenters, where racks of servers are deployed and connected together through high-speed

connectivity. This infrastructure is managed by the operating system, which provides the basic

capability of machine and network management.

 The core logic is then implemented in the middleware that manages the virtualization layer, which

is deployed on the physical infrastructure in order to maximize its utilization and provide a

customizable runtime environment for applications.

 The middleware provides different facilities to application developers according to the type of

services sold to customers. These facilities, offered through Web 2.0-compliant interfaces, range

from virtual infrastructure building and deployment to application development and runtime

environment

Q7) Discuss hardware Architecture for Parallel Processing.

The core elements of parallel processing are CPUs. Based on the number of instruction and data streams that

can be processed simultaneously, computing systems are classified into the following four categories:

• Single-instruction, single-data (SISD) systems • Single-instruction, multiple-data (SIMD) systems

• Multiple-instruction, single-data (MISD) systems • Multiple-instruction, multiple-data (MIMD) systems

Single-instruction, single-data (SISD) systems

An SISD computing system is a uniprocessor machine capable of executing a single instruction, which

operates on a single data stream

SINGLE-INSTRUCTION, MULTIPLE SYSTEMS

An SIMD computing system is a multiprocessor machine capable of executing the same instruction on all

the CPUs but operating on different data streams

Page 10 of 14

MULTIPLE-INSTRUCTION, SINGLE DATA SYSTEMS

 An MISD computing system is a multiprocessor machine capable of executing different instructions on

different PEs but all of them operating on the same data set

MULTIPLE-INSTRUCTION, MULTIPLE SYSTEMS-DATA

An MIMD computing system is a multiprocessor machine capable of executing multiple instructions on

multiple data sets

MULTIPLE-INSTRUCTION, MULTIPLE SYSTEMS MIMD

machines are broadly categorized into shared memory MIMD based on the way PEs are coupled to the main

memory.

Shared memory

MIMD machines In the shared memory MIMD model, all the PEs are connected to a single global memory

and they all have access to it Systems based on this model are also called tightly coupled mult iprocessor

systems. The communication between PEs in this model takes place through the shared memory;

modification of the data stored in the global memory by one PE is visible to all other PEs. INSTRUCTION,

MULTIPLE-DATA (MIMD) MIMD machines are broadly categorized into shared-memory MIMD and

distributed

Distributed memory

Page 11 of 14

MIMD machines In the distributed memory MIMD model, all PEs have a local memory. Systems based on

this model are also called loosely coupled multiprocessor systems. The communication between PEs in this

model takes place through the interconnection network (the interprocess communication channel, or IPC).

The network connecting PEs can be configured to tree, mesh, cube, and so on. Each PE operates

asynchronously, and if communication/synchronization among tasks is necessary, they can do so by

exchanging messages between them

Q8) Discuss the most important model for message-based communication

Models for message-based communication

• Point-to-point message model This model organizes the communication among single

components. Each message is sent from one component to another, and there is a direct

addressing to identify the message receiver. In a point-to-point communication model it is

necessary to know the location of or how to address another component in the system. There is no

central infrastructure that dispatches the messages, and the communication is initiated by the

message sender. It is possible to identify two major subcategories: direct communication and

queue-based communication. In the former, the message is sent directly to the receiver and

processed at the time of reception. In the latter, the receiver maintains a message queue in which

the messages received are placed for later processing. The point-topoint message model is useful

for implementing systems that are mostly based on one-to-one or many-to-one communication.

• Publish-and-subscribe message model This model introduces a different strategy, one that is based

on notification among components. There are two major roles: the publisher and the subscriber.

The former provides facilities for the latter to register its interest in a specific topic or event.

Specific conditions holding true on the publisher side can trigger the creation of messages that are

attached to a specific event. A message will be available to all the subscribers that registered for

the corresponding event. There are two major strategies for dispatching the event to the

subscribers:

o Push strategy. In this case it is the responsibility of the publisher to notify all the

subscribers— for example, with a method invocation.

o Pull strategy. In this case the publisher simply makes available the message for a specific

event, and it is responsibility of the subscribers to check whether there are messages on the

events that are registered.

The publish-and-subscribe model is very suitable for implementing systems based on the oneto-many

communication model and simplifies the implementation of indirect communication patterns. It is, in

fact, not necessary for the publisher to know the identity of the subscribers to make the

communication happen.

• Request-reply message model The request-reply message model identifies all communication

models in which, for each message sent by a process, there is a reply. This model is quite popular

Page 12 of 14

and provides a different classification that does not focus on the number of the components

involved in the communication but rather on how the dynamic of the interaction evolves. Point-to-

point message models are more likely to be based on a request-reply interaction, especially in the

case of direct communication. Publishand-subscribe models are less likely to be based on request-

reply since they rely on notifications

Q9) Discuss Service Oriented Architecture (SOA)

SOA is an architectural style supporting service orientation. It organizes a software system into a

collection of interacting services.

SOA encompasses a set of design principles that structure system development and provide means for

integrating components into a coherent and decentralized system.

SOA based computing packages functionalities into a set of interoperable services, which can be

integrated into different software systems belonging to separate business domains.

There are two major roles within SOA:

 Service Provider

 Service Consumer

The following guiding principles, which characterize SOA platforms, are winning features

within an enterprise context:

 Standardized service contract. Services adhere to a given communication agreement,
which is specified through one or more service description documents.

 Loose coupling. Services are designed as self-contained components, maintain relationships
that minimize dependencies on other services, and only require being aware of each other.
Service contracts will enforce the required interaction among services. This simplifies the
flexible aggregation of services and enables a more agile design strategy that supports the
evolution of the enterprise business.

 Abstraction. A service is completely defined by service contracts and description documents.
They hide their logic, which is encapsulated within their implementation. The use of service
description documents and contracts removes the need to consider the technical
implementation details and provides a more intuitive framework to define software systems
within a business context.

 Reusability. Designed as components, services can be reused more effectively, thus reducing
development time and the associated costs. Reusability allows for a more agile design and
cost- effective system implementation and deployment. Therefore, it is possible to leverage
third- party services to deliver required functionality by paying an appropriate fee rather
developing the same capability in-house.

 Autonomy. Services have control over the logic they encapsulate and, from a service
consumer point of view, there is no need to know about their implementation.

Page 13 of 14

 Lack of state. By providing a stateless interaction pattern (at least in principle), services
increase the chance of being reused and aggregated, especially in a scenario in which a single
service is used by multiple consumers that belong to different administrative and business
domains.

 Discoverability. Services are defined by description documents that constitute supplemental
metadata through which they can be effectively discovered. Service discovery provides an
effective means for utilizing third-party resources.

 Composability. Using services as building blocks, sophisticated and complex operations can
be implemented. Service orchestration and choreography provide a solid support for
composing services and achieving business goals.

Q10) With a neat diagram discuss distributed object Programming Model (Distributed Object Framework).

Distributed object frameworks extend object-oriented programming systems by allowing objects to

be distributed across a heterogeneous network and provide facilities so that they can coherently act as

though they were in the same address space.

Distributed object frameworks leverage the basic mechanism introduced with RPC and extend it to

enable the remote invocation of object methods and to keep track of references to objects made

available through a network connection.

With respect to the RPC model, the infrastructure manages instances that are exposed through well-

known interfaces instead of procedures.

Therefore, the common interaction pattern is the following:

1. The server process maintains a registry of active objects that are made available to other

processes. According to the specific implementation, active objects can be published using interface

definitions or class definitions.

2. The client process, by using a given addressing scheme, obtains a reference to the active remote

object. This reference is represented by a pointer to an instance that is of a shared type of interface

and class definition.

3. The client process invokes the methods on the active object by calling them through the

reference previously obtained. Parameters and return values are marshaled as happens in the case

of RPC.

Page 14 of 14

Examples of distributed Object frameworks

 Common Object Request Broker Architecture (CORBA): cross platform and cross language
interoperability among distributed components.

 Distributed Component Object Model (DCOM/COM+): Microsoft technology for
distributed object programming before the introduction of .NET technology.

 Java Remote Method Invocation (RMI): technology provided by Java for enabling RPC
among distributed Java objects.

 .NET Remoting: IPC among .NET applications, a uniform platform for accessing remote
objects from within any application developed in any of the languages supported by
.NET.

	There are two major roles within SOA:
	Therefore, the common interaction pattern is the following:
	Examples of distributed Object frameworks

