
Page 1 of 4

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - I

 Sub: Introduction to Python, Data and Control Systems Code: 22MBABA303

Date: 20-01-2024 Duration: 90 mins Max Marks: 50 Sem: III Branch: MBA

SET- II

Marks

OBE

CO RBT

 Part A - Answer Any Two Full Questions (2* 20 = 40 marks)

1 (a) Difference between a word and a sentence in programming.
Unlike human languages, the Python vocabulary is actually pretty small. We call this

“vocabulary” the “reserved words”. These are words that have very special meaning to Python.

When Python sees these words in a Python program, they have one and only one meaning to

Python. Later as you write programs you will make up your own words that have meaning to you

called variables. You will have great latitude in choosing your names for your variables, but you

cannot use any of Python’s reserved words as a name for a variable.

Reserve words:

 [03] CO1 L1

(b) Explain the concept of debugging in python program.

When Python spits out an error or even when it gives you a result that is different from what

you had intended, then begins the hunt for the cause of the error.

Debugging is the process of finding the cause of the error in your code. When you are

debugging a program, and especially if you are working on a hard bug, there are four things to

try:

When Python spits out an error or even when it gives you a result that is different from what you

had intended, then begins the hunt for the cause of the error.

Debugging is the process of finding the cause of the error in your code. When you are debugging

a program, and especially if you are working on a hard bug, there are four things to try:

Reading Examine your code, read it back to yourself, and check that it says what you meant to

say.

Running Experiment by making changes and running different versions. Often if you display the

right thing at the right place in the program, the problem becomes obvious, but sometimes you

have to spend some time to build scaffolding.

Ruminating Take some time to think! What kind of error is it: syntax, runtime, semantic? What

information can you get from the error messages, or from the output of the program? What kind

of error could cause the problem you’re seeing? What did you change last, before the problem

appeared?

Retreating At some point, the best thing to do is back off, undoing recent changes, until you get

back to a program that works and that you understand. Then you can start rebuilding.

[07] CO1 L2

(c) Analyze the importance of terminology in programming languages.

These programming language translators fall into two general categories: (1) interpreters and (2)

compilers.

An interpreter reads the source code of the program as written by the programmer, parses the

source code, and interprets the instructions on the fly. Python is an interpreter and when we are

running Python interactively, we can type a line of Python (a sentence) and Python processes it

immediately and is ready for us to type another line of Python.

[10] CO1 L4

Page 2 of 4

Some of the lines of Python tell Python that you want it to remember some value for later. We

need to pick a name for that value to be remembered and we can use that symbolic name to

retrieve the value later. We use the term variable to refer to the labels we use to refer to this

stored data.

A compiler needs to be handed the entire program in a file, and then it runs a process to translate

the high-level source code into machine language and then the compiler puts the resulting

machine language into a file for later execution.

2 (a) Define the term Interpreter.
An interpreter reads the source code of the program as written by the programmer, parses the

source code, and interprets the instructions on the fly. Python is an interpreter and when we are

running Python interactively, we can type a line of Python (a sentence) and Python processes it

immediately and is ready for us to type another line of Python

[03] CO1 L1

(b) Discuss the role of comments in Python programming with an example.
As programs get bigger and more complicated, they get more difficult to read. Formal languages

are dense, and it is often difficult to look at a piece of code and figure out what it is doing, or

why.

For this reason, it is a good idea to add notes to your programs to explain in natural language

what the program is doing. These notes are called comments, and in Python they start with the #

symbol:
compute the percentage of the hour that has elapsed

Percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments at the end of a

line:

Percentage = (minute * 100) / 60 # percentage of an hour

Everything from the # to the end of the line is ignored; it has no effect on the program.

Comments are most useful when they document non-obvious features of the code. It is reasonable

to assume that the reader can figure out what the code does; it is much more useful to explain

why.

This comment is redundant with the code and useless:

v = 5 # assign 5 to v

This comment contains useful information that is not in the code:

v = 5 # velocity in meters/second.

Good variable names can reduce the need for comments, but long names can make complex

expressions hard to read, so there is a trade-off.

[07] CO1 L2

(c) Discuss the three major three types of errors that occur in python

programming.

As your programs become increasingly sophisticated, you will encounter three general types of

errors:

Syntax errors These are the first errors you will make and the easiest to fix. A syntax error

means that you have violated the “grammar” rules of Python. Python does its best to point right at

the line and character where it noticed it was confused. The only tricky bit of syntax errors is that

sometimes the mistake that needs fixing is actually earlier in the program than where Python

noticed it was confused. So the line and character that Python indicates in a syntax error may just

be a starting point for your investigation.

Logic errors A logic error is when your program has good syntax but there is a mistake in the

order of the statements or perhaps a mistake in how the statements relate to one another. A good

example of a logic error might be, “take a drink from your water bottle, put it in your backpack,

walk to the library, and then put the top back on the bottle.”

Semantic errors A semantic error is when your description of the steps to take is syntactically

perfect and in the right order, but there is simply a mistake in the program. The program is

perfectly correct but it does not do what you intended for it to do.

[10] CO1 L2

3 (a) Define boolean data type and write example?
Python boolean type is one of the built-in data types provided by Python, which represents

one of the two values i.e. True or False. Generally, it is used to represent the truth values of the

expressions.

Example:
Input: 1==1

Output: True

Input: 2<1

Output: False

[03] CO2 L1

(b) Describe the concept of a function and its use in Python. [07] CO2 L2

https://www.geeksforgeeks.org/python-programming-language/

Page 3 of 4

In the context of programming, a function is a named sequence of statements that performs a

computation. When you define a function, you specify the name and the sequence of statements.

Later, you can “call” the function by name. We have already seen one example of a function call:

>>> type(32)

<class 'int'>

The name of the function is type. The expression in parentheses is called the argument of the

function. The argument is a value or variable that we are passing into the function as input to the

function. The result, for the type function, is the type of the argument. It is common to say that a

function “takes” an argument and “returns” a result. The result is called the return value.

So far, we have only been using the functions that come with Python, but it is also possible to add

new functions. A function definition specifies the name of a new function and the sequence of

statements that execute when the function is called.

Once we define a function, we can reuse the function over and over throughout our program.

Here is an example:

def print_lyrics():

print("I'm a lumberjack, and I'm okay.")

print('I sleep all night and I work all day.')

def is a keyword that indicates that this is a function definition. The name of the function is

print_lyrics. The rules for function names are the same as for variable names: letters, numbers

and some punctuation marks are legal, but the first character can’t be a number. You can’t use a

keyword as the name of a

function, and you should avoid having a variable and a function with the same name.

The empty parentheses after the name indicate that this function doesn’t take any arguments.

Later we will build functions that take arguments as their inputs. The first line of the function

definition is called the header; the rest is called the body. The header has to end with a colon and

the body has to be indented.

By convention, the indentation is always four spaces. The body can contain any number of

statements.

(c) Write a Python program that uses variables, expressions, and statements to

perform a specific task.
Variables:

One of the most powerful features of a programming language is the ability to manipulate

variables. A variable is a name that refers to a value.

An assignment statement creates new variables and gives them values:

>>> message = 'And now for something completely different'

>>> n = 17

>>> pi = 3.1415926535897931

This example makes three assignments. The first assigns a string to a new variable named

message; the second assigns the integer 17 to n; the third assigns the (approximate) value of _ to

pi.

To display the value of a variable, you can use a print statement:

>>> print(n)

17

>>> print(pi)

3.141592653589793

The type of a variable is the type of the value it refers to.

>>> type(message)

<class 'str'>

>>> type(n)

<class 'int'>

>>> type(pi)

<class 'float'>

A statement is a unit of code that the Python interpreter can execute. We have seen two kinds of

statements: print being an expression statement and assignment. When you type a statement in

interactive mode, the interpreter executes it and displays the result, if there is one.

A script usually contains a sequence of statements. If there is more than one statement, the results

appear one at a time as the statements execute.

For example, the script

print(1)

x = 2

print(x)

produces the output

[10] CO2 L3

Page 4 of 4

1

2

The assignment statement produces no output.

An expression is a combination of values, variables, and operators. A value all by itself is

considered an expression, and so is a variable, so the following are all legal expressions

(assuming that the variable x has been assigned a value):

17

x

x + 17

If you type an expression in interactive mode, the interpreter evaluates it and displays the result:

>>> 1 + 1

2

But in a script, an expression all by itself doesn’t do anything! This is a common source of

confusion for beginners.

 Part B - Compulsory (01*10=10 marks) – CASE STUDY

4 Write a Python program on arithmetic expressions. Identify the variables, their

data types and write the output. [10]
Arithmetic Expressions: An arithmetic expression is a combination of numeric values, operators, and

sometimes parenthesis. The result of this type of expression is also a numeric value. The operators used

in these expressions are arithmetic operators like addition, subtraction, etc. Here are some arithmetic

operators in Python:

 Data type:

type(x) – int

type(y) – int

type(3.3) – float

type(‘hello world’) - str

CO2 L3
