	TUTE OF NOLOGY		USN								* CEREBY OF A	OF TECHNOLOGY, BENGALURU.	
Sub:	Exploratory Data	Analysis fo	or Busine	SS					Code	e: 2	22MBABA304		
Date:	07-03-2024	Duration:	90 mins	Max Ma	rks: 50		Sem:	III	Bran	nch: N	ИВА		
			SET.	- III – Ar	<mark>ıswer Ke</mark>	y .				I			
											()BE	
									Mark	s CO	RBT		
	Part A - Answer	Internal Assesment Test - II ratory Data Analysis for Business Code: 22MBABA304 2024 Duration: 90 mins Max Marks: 50 Sem: III Branch: MBA 22MBABA304 2024 Duration: 90 mins Max Marks: 50 Sem: III Branch: MBA 2024 Duration: 00 Marks SET- III – Answer Key OBE Marks: CO RET ical model is said to be overfitted when the model does not make accurate from the model gets trained with so much data, it starts from the noise and inaccurate data artifice in dura ta set. And when testing i data results in High variance. Then the model does not categorize the data data results in High variance. Then the model does not categorize the data data wave linear data or using the parameters like the maximal depth if we details and noise. The causes of overfitting at linear in if we have linear dor using the parameters like the maximal depth if we details on the wave linear toremathods beause these set types of machine learning alop											
1 (a)	Define the term 'O	verfitting'.								[03]	CO3	L1	
	A <u>statistical model</u> is predictions on testing learning from the noi- with test data results correctly, because of parametric and non-li- have more freedom in really build unrealis algorithm if we have are using decision tre In a nutshell, <u>Overfi-</u> algorithms on training	said to be of g data. Wher ise and inacc in High vari too many det near methods n building the tic models. linear data o es. <u>tting</u> is a pr g data is diffe	a model urate data iance. The ails and no because t e model ba A solution r using the oblem where the the the the the the the rent from	gets train entries in en the mo- oise. The o these types ased on the n to avoid e parametor here the o unseen da	ned with a n our data del does n causes of o s of mach ne dataset id overfitt ers like th evaluation	so m set. not c overf ine le and ting te ma	And we categorie fitting a carning therefore is using a carning therefore is using a carning the carni	ata, it when to ize the are the galgor ore the ng a depth	starts esting e data e non- ithms y can linear if we				
(b)	Discuss the import	ance of line	ar regress	sion.						[07]	CO3	L2	
	linear relationship b features. When the Univariate Linear reg multivariate linear reg The interpretability of provides clear coeffic the dependent varia dynamics. Its simpli- implement, and serve Linear regression is advanced models. Te inspiration from linea	between a denumber of t gression, and gression. of linear regr cients that el able, facilita icity is a vi s as a founda not merely echniques lik ur regression, n assumption	ependent he indepe in the case ession is ucidate the ting a de rtue, as l tional cone a predict e regulariz expanding	variable ndent fea e of more a notable e impact o eeper und linear reg cept for m ive tool; zation and g its utility	and one ture, is 1 than one strength. of each in derstandin ression is ore comp it forms d support y. Additio	or 1 the featu The adependent of the the vect nally	more i en it is ure, it i model endent of the unspare ulgorith basis or mac y, linea	ndepe knov s knov s knov 's equ variat under nt, ea ms. for va chines r regre	ndent wn as uation ble on rlying sy to arious draw ession				
	• •	ot of bias-va	riance tra	ade-off iı	1 the con	text	of line	ear		[10]	CO3	L4	
	variance in order to a simple with fewer part	achine learnin void overfittin rameters, it m iber of param ilance betwee	ng and und hay have lo heters, it with the bias and	lerfitting i ow variand ill have hig l variance	n the mod ce and hig gh varianc errors, an	lel. If gh bia e and id thi	f the m as. Wh d low b is balar	odel is ereas, pias. So	s very if the o, it is				

	1		
U U U U U U U U U U U U U U U U U U U			
For an accurate prediction of the model, algorithms need a low variance and low bias. But this is not possible because bias and variance are related to each other:			
 If we decrease the variance, it will increase the bias. If we decrease the bias, it will increase the variance. Bias-Variance trade-off is a central issue in supervised learning. Ideally, we need a model that accurately captures the regularities in training data and simultaneously generalizes well with the unseen dataset. Unfortunately, doing this is not possible simultaneously. Because a high variance algorithm may perform well with training data, but it may lead to overfitting to noisy data. Whereas, high bias algorithm generates a much simple model that may not even capture important regularities in the data. So, we need to find a sweet spot between bias and variance to make an optimal model. 			
between bias and variance errors. 2 (a) Define L1 Regularization.	[03]	CO3	L1
A regression model which uses the L1 Regularization technique is called LASSO(Least Absolute Shrinkage and Selection Operator) regression. Lasso Regression adds the "absolute value of magnitude" of the coefficient as a penalty term to the loss function(L). Lasso regression also helps us achieve feature selection by penalizing the weights to approximately equal to zero if that feature does not serve any purpose in the model.			LI
 (b) Write the concept of bagging and examine its role in improving the performance of tree-based models. Bagging, also known as Bootstrap aggregating, is an ensemble learning technique that helps to improve the performance and accuracy of machine learning algorithms. It is used to deal with bias-variance trade-offs and reduces the variance of a prediction model. Bagging avoids overfitting of data and is used for both regression and classification models, specifically for decision tree algorithms. Steps to Perform Bagging Consider there are n observations and m features in the training set. You need to select a random sample from the training dataset without replacement A subset of m features is chosen randomly to create a model using sample observations The feature offering the best split out of the lot is used to split the nodes The tree is grown, so you have the best root nodes The above steps are repeated n times. It aggregates the output of individual 		CO4	L3

Original Dataset Bootstrappin Classifier 1 Classifier 2 Ensemble model Bagging	9		
 (c) Outline the importance regression shrinkage methods. Ever have a question that, "Why is Linear Regression giving me such good accuracy the training set but a low accuracy on the test set in spite of adding all the available." 		CO3	L4
<i>dependent features to the model?</i> " The question above seems inexplicable to many people but is answered by a conc called overfitting in which your model, in addition to learning the data, also learns	ept		
 noise present in it. Hence learning the training points, a bit too perfectly. <i>How do you solve it?</i> This is where shrinkage methods (also known as regularization) come in play. The methods apply a penalty term to the Loss function used in the model. Minimizing 			
loss function is equal to maximizing the accuracy. To understand this better, we nee go into the depths of Loss function in Linear Regression . Linear Regression uses Least Squares to calculate the minimum error between the ac	l to		
values and the predicted values. The aim is to minimize the squared difference betw the actual and predicted values to draw the best possible regression curve for the prediction accuracy.			
<i>Now, what does shrinking do?</i> Shrinking the coefficient estimates significantly reduces their variance. When perform shrinking, we essentially bring the coefficient estimates closer to 0.			
The need for shrinkage method arises due to the issues of underfitting or overfitting data. When we want to minimize the mean error (Mean Squared Error(MSE) in case Linear Regression), we need to optimize the bias-variance trade-off.			
What is this bias-variance trade-off? The bias-variance trade-off indicates the level of underfitting or overfitting of the of with respect to the Linear Regression model applied to it. A high bias-low varia means the model is underfitted and a low bias-high variance means that the mode overfitted. We need to trade-off between bias and variance to achieve the per combination for the minimum Mean Squared Error as shown by the graph below.	nce I is		

In its most basic type, SVM doesn't support multiclass classification. For multiclass classification, the same principle is utilized after breaking down the multi- classification problem into smaller subproblems, all of which are binary classification problems. The popular methods that are used to perform multi-classification on the problem statements using SVM (multiclass support vector machines) are as follows: • One vs One (OVO) approach • Directed Acyclic Graph (DAG) approach • One vs All (OVA) approach	-		
 Contervs All (OVA) approach (c) Compare and contrast discriminant analysis with logistic regression for classification. Logistic Reg vs. Discrim: Differences Discriminant Analysis Assumes MV normality Assumes equality of VCV matrices Large number of predictors violates MV normality → can't be accommodated Predictors must be continuous, interval level More powerful when assumptions are met Many assumptions, rarely met in practice Categorical IVs create problems Categorical IVs create problems 	[10]	CO4	L2
Part B - Compulsory (01*10=10 marks) – CASE STUDY			
 Critically evaluate the advantages and limitations of Support Vector Machines in real-world scenarios. Advantages Performs well at classifying non-linear data Optimizing margins can help reduce the overfitting of data and allow for capacity control Learning without a local minima There are many kernels (transformations) that could be used to fit the data unlike any other algorithm Often provides sparse solutions Performs well on data sets that have many attributes, even if there are relatively very few cases on which to train the model Limitations Choice of the right Kernel Most software uses a few kernels that generalize to many situations, but no kernel generalizes to every situation Can be computationally intensive 	[10]	CO4	L5

Course Outcomes (Cos)		P01	P02	P03	P04	P05	PSOI	PSO2	PSO3	PSO4
CO1:	Understand data mining and its importance.									
CO2:	Apply knowledge of research design for business problems.									
CO3:	Analyse the cause and effect relationship between the variables from the analysis.				1a, 1b,		1c, 2a		2c	
CO4:	Evaluate regression and decision tree based method to solve business problems.		2b ,3a		3b			3c		4
