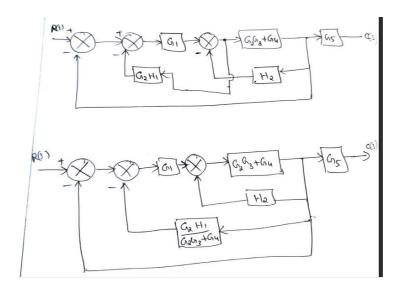
	UTE OF IOLOGY	USN									
		Interna	al Ass	esment 7	Test - I	I					
Sub:	Control systems							Code:	21E	E52	
Date:	01/02/2023	Duration: 90 mins	s M	lax Marks	: 50	Se	m: 5	Branc	h: EEF	Ξ	
		Answer A	ny FΓ	VE FULI	. Questi	ions					
									Marks	OB	
[1	СО	RBT
1	Obtain the closed technique for the f	loop transfer functi	on us	ing bloc		ram red	uction		[10]	CO2	L3
		HIK	5-14	Hak	\$ <u>}</u>		65				
2	the transfer function $\frac{1}{x_1}$		H ₃		F ₃	x ₅	1	× 6	[10]	CO3	L3
3	Draw the signal flo transfer function	by graph for the electron C_2		$\frac{1 \text{ networ}}{\sqrt{0}}$	k show	n in fig	g and fir	nd its	[10]	CO2	L4

4	Derive the output response of second order system for under damped system for a unit step input	[10]	CO3	L2
5	Find the overall gain of the given SFG using Mason's gain formula $ \begin{array}{c} $	[10]	CO2	L3
6	Find the transfer function represented by the given equations using signal flow graph technique $x = x_1 + \alpha_0 u$ $\frac{dx_1}{dt} = -\alpha_1 x_1 + x_2 + \alpha_2 u$ $\frac{dx_2}{dt} = -\alpha_2 x_1 + \alpha_1 u$	[10]	CO2	L3

Solutions

1



$$= \frac{G_{1}(G_{2}G_{3}+G_{4})}{[1+H_{2}(G_{2}G_{3}+G_{4})]} \times \frac{[1+H_{2}(G_{4}G_{3}+G_{4})]}{[1+H_{2}(G_{2}G_{3}+G_{4})]} \frac{[G_{2}G_{3}+G_{4}]}{[1+H_{2}(G_{2}G_{3}+G_{4})](G_{2}G_{3}+G_{4})} = \frac{G_{1}(G_{2}G_{3}+G_{4})}{[1+H_{2}(G_{2}G_{3}+G_{4})](G_{2}G_{3}+G_{4})} + \frac{G_{1}G_{2}G_{3}+G_{4}}{[1+H_{2}(G_{2}G_{3}+G_{4})]}$$

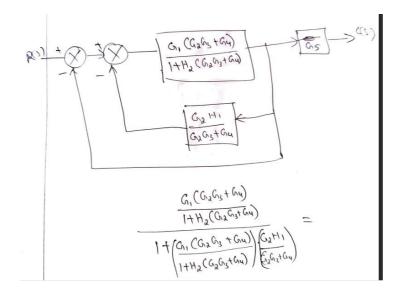
$$= \frac{G_{1}(G_{2}G_{3}+G_{4})}{[1+H_{2}(G_{2}G_{3}+G_{4})] + G_{1}G_{2}H_{1}}$$

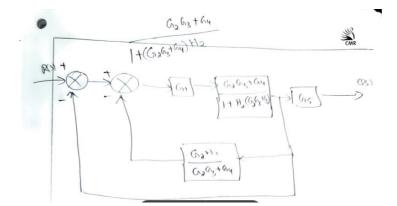
$$\frac{G_{1} (G_{2}G_{3} + G_{4})}{[1 + H_{2} (G_{2}G_{3} + G_{4})]}$$

$$(1 + H_{2} (G_{2}G_{3} + G_{4})] (G_{2}G_{3} + G_{4})]$$

$$(1 + H_{2} (G_{2}G_{3} + G_{4})] (G_{2}G_{3} + G_{4})$$

$$= \frac{G_{1} (G_{2}G_{3} + G_{4})}{[1 + H_{2} (G_{2}G_{3} + G_{4})]} \times \frac{[1 + H_{2} (G_{2}G_{3} + G_{4})] (G_{2}G_{3} + G_{4})}{[1 + H_{2} (G_{2}G_{3} + G_{4})]}$$





$$R_{3} + (G_{3}C_{3} + G_{3}) + (G_{4}C_{3} + G_{3}) + (G_{5}C_{3}) + (G_{5}C_{3$$

From O, B, B, B.

$$V_{1}(y) = \begin{pmatrix} C_{1}, S & T_{1}(y) & R_{1} & V_{1}(y) & C_{2}, S & T_{2}(y) & R_{2} & V_{0}(y) \\ \hline \\ C_{1}, S & -R_{1} & -C_{2}, S & -R_{1} & -C_{2}, S & -C_{2},$$

Forward Path Chain:

$$M_1 = R_1 R_2 C_1 C_2 S^2$$
, $\Delta_1 = 1$.
Individual loop Chains
 $L_{11} = -R_1 C_1 S$.
 $L_{12} = -R_1 C_2 S$
 $L_{13} = -R_2 C_2 S$
Two Non-Touching loop Chains
 $L_{21} = R_1 R_2 C_1 C_2 S^2$.
 $\Delta = 1 - (L_{11} + L_{12} + L_{13}) + L_2 1$
 $= 1 + R_1 C_1 S + R_1 C_3 S + R_2 C_2 S + R_1 R_2 C_1 C_2 S^2$.
 $\frac{V_0(L)}{V_1(L)} = \frac{M_1 \Delta_1}{\Delta}$
 $= \frac{R_1 R_2 C_1 C_2 S^2}{1 + R_1 C_1 S + R_1 C_2 S + R_2 (L_2 S + R_1 R_2 (L_2 S^2) + R_1 R_2 (L_2 S^2)}$

3)

For ward Rth Grain.

$$M_1 = G_1, G_2, G_3, A_1 = 1$$

 $M_2 = G_3, G_{14}, A_2 = 1$
Individual Joop Grain.
 $L_{11} = -G_1, H_1$
 $L_{12} = -G_3, H_2$.
 $L_{13} = -G_1, G_2, G_3, H_3$.
 $L_{14} = -G_3, G_4, H_3$
No Non-Touching Joop Grain.
 $L_{21} = G_1, G_3, H_1 H_2$.
 $\Delta = 1 - (L_{11} + L_{12} + L_{13} + L_{14}) + L_2 1$
 $= 1 + G_1, H_1 + G_3, H_2 + G_1, G_2, G_3, H_3 + G_3, G_4, H_3 + G_1, G_3, H_1, H_2$.
 $\frac{C(S)}{RD} = \frac{M_1A_1 + M_2A_2}{A}$
 $= \frac{G_1G_2G_3 + G_3G_4}{A}$
 $= \frac{G_1G_2G_3 + G_3G_4}{A}$
 $= \frac{G_1G_2G_3 + G_3G_4}{A}$

4

Most control systems are designed as under damped systems to have fast response

Step Response of an under damped system $0<\xi<1$

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad R(s) = 1/s$$

$$C(s) = \frac{1}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$$

$$C(s) = \frac{1}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$$

$$C(s) = \frac{A}{s} + \frac{Bs + C}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Solving for A, B and C we can find that A=1 B= -1 and $\mathcal{C} = -2\xi\omega_n$

$$=\frac{1}{s}-\frac{s+2\xi\omega_n}{(s^2+2\xi\omega_ns+\omega_n^2)}$$

.

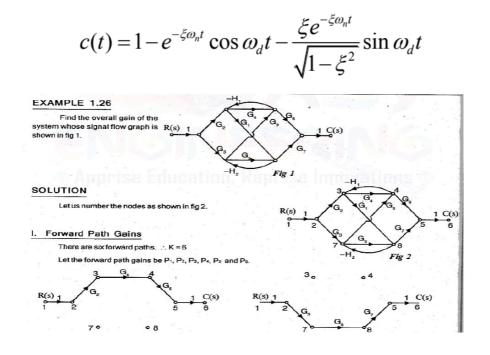
$$C(s) = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{s^2 + 2\zeta\omega_n s + \zeta^2 \omega_n^2 + \omega_n^2 - \zeta^2 \omega_n^2}$$
$$C(s) = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{(s + \zeta\omega_n)^2 + \omega_n^2(1 - \zeta^2)} \qquad C(s) = \frac{1}{s} - \frac{s + 2\zeta\omega_n}{(s + \zeta\omega_n)^2 + \omega_n^2}$$

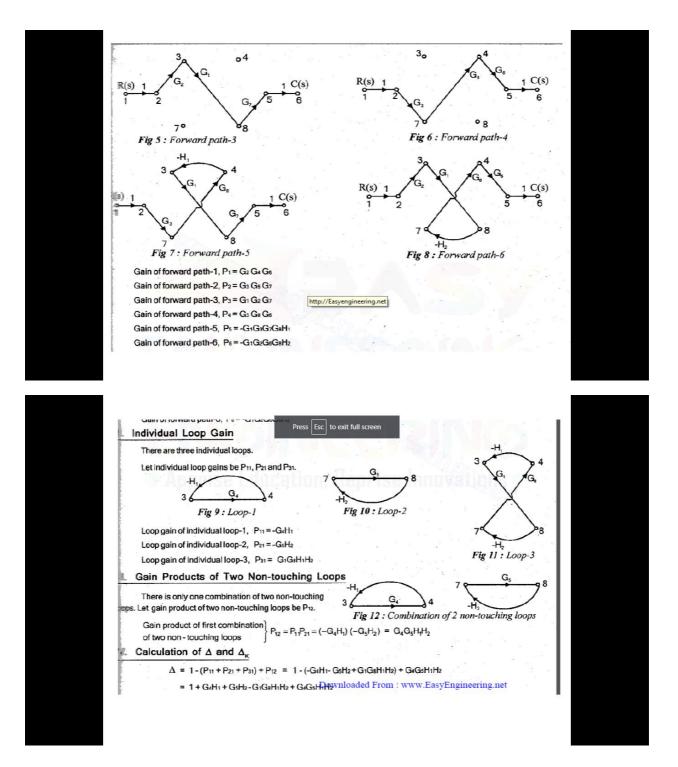
• Where $\omega_d = \omega_n \sqrt{1 - \xi^2}$, is the frequency of transient oscillations and is called **damped natural frequency**.

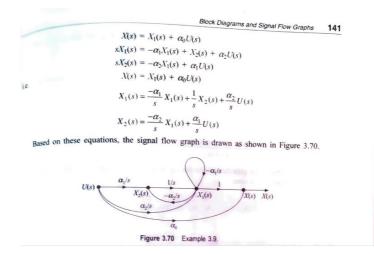
$$C(s) = \frac{1}{s} - \frac{s + \zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2} - \frac{\zeta \omega_n}{\left(s + \zeta \omega_n\right)^2 + \omega_d^2}$$

$$= \frac{1}{s} - \frac{s + \xi \omega_n}{(s + \xi \omega_n)^2 + \omega_d^2} - \frac{\xi \omega_n}{\omega_d} \cdot \frac{\omega_d}{(s + \xi \omega_n)^2 + \omega_d^2}$$
$$= \frac{1}{s} - \frac{s + \xi \omega_n}{(s + \xi \omega_n)^2 + \omega_d^2} - \frac{\xi}{\sqrt{1 - \xi^2}} \cdot \frac{\omega_d}{(s + \xi \omega_n)^2 + \omega_d^2}$$

Taking the inverse Laplace transform of the above equation







	s and the gains associated	with them are as follows:			
Forward path	$U(s)-X_2(s)-X_1(s)-X(s)$	$M_1 = \frac{\alpha_1}{s} \cdot \frac{1}{s} \cdot 1 = \frac{\alpha_1}{s^2}$			
Forward path	$U(s)-X_1(s)-X(s)$	$M_2 = \frac{\alpha_2}{s} \cdot 1 = \frac{\alpha_2}{s}$			
Forward path	U(s)-X(s)	$M_3 = \alpha_0$			
The loops and th	he gains associated with them are as follows:				
Loop	$X_2(s)-X_1(s)-X_2(s)$	$L_1 = \left(\frac{-\alpha_2}{s}\right) \left(\frac{1}{s}\right) = \frac{-\alpha_2}{s^2}$			
Loop	$X_1(s) - X_1(s)$	$L_2 = \frac{-\alpha_1}{c}$			

Both the loops are touching the first and second forward paths and no loop is touching the third forward path

г.

 $\Delta_1 = 1, \Delta_2 = 1, \Delta_3 = 1 - \left(-\frac{\alpha_2}{s^2} - \frac{\alpha_1}{s}\right) = 1 + \frac{\alpha_1}{s} + \frac{\alpha_2}{s^2} = \Delta$

142 Control Systems

The determinant of the signal flow graph is $D = 1 - (L_1 + L_2)$

$$\therefore \qquad \Delta = 1 - \left(-\frac{\alpha_2}{s^2} - \frac{\alpha_1}{s} \right) = 1 + \frac{\alpha_1}{s} + \frac{\alpha_2}{s^2}$$

Using Mason's gain formula, the transfer function is

$$\frac{X(s)}{U(s)} = \frac{M_1 \Delta_1 + M_2 \Delta_2 + M_3 \Delta_3}{\Delta} = \frac{\frac{\alpha_1}{s^2} + \frac{\alpha_2}{s}}{1 + \frac{\alpha_1}{s} + \frac{\alpha_2}{s^2}} + \alpha_0 = \alpha_0 + \frac{\alpha_1 + \alpha_2 s}{s^2 + \alpha_1 s + \alpha_2}$$
$$\frac{X(s)}{U(s)} = \frac{\alpha_0 (s^2 + \alpha_1 s + \alpha_2) + \alpha_1 + \alpha_2 s}{s^2 + \alpha_1 s + \alpha_2}$$