CMR

INSTITUTE OF

TF	CI	ΗN	10	I O	GY
	-~		v٧	-	· •

USN					

Internal Assessment Test - III

second order system

Sub:	Control system	ıs						Code:	21E	E52
Date:	14/01/2024	Duration:	90 mins	Max Marks:	50	Sem:	5	Branch:	EEE	
Answe	er Any FIVE FULL	Questions		<u> </u>						
								Marks	OBE	
								IVIAINS	СО	RBT
1	over free	•	cross over f	fer function ar requency, gain		_		[10]	CO2	L3
2	Sketch th	ne root locus f	or the trans	<i>G</i> (fer function	$(s) = \frac{1}{s}$	$\frac{K}{(s^2 + 4s +$	-13)	[10]	CO2	L3
3	Derive the		iction of a P	D controller al	ong wi	th its stead	dy	[10]	CO2	L4
4	Derive a	n expression fo	or resonant	peak and reso	nant fr	equency f	or a	[10]	CO3	L2

5 A unity feedback system is characterized by an open-loop	transfer function [10]	CO2	L3

	$G(s) = \frac{K}{s(s+10)}$ Determine the gain K so that the system will have the damping ration of 0.5. For this value of K, determine the settling time, peak overshoot and time to peak overshoot for a unit step.			
	For a closed loop system whose open loop transfer function	[10]	CO2	L4
6				
	$G(s)H(s) = \frac{10}{s(s+1)(s+2)}$			
	Find the steady state error when the input is r(t) =1+2t+1.5 t ²			

Solution

1)
$$G(S) = \frac{10}{S(1+0.45)(1+0.15)}$$

Put $S=j\omega$, $G(j\omega) = \frac{10}{j\omega(1+0.4j\omega)(1+0.1j\omega)}$

corner frequencies, $\omega_{c1} = \frac{1}{0.4} = 2.5 \pi ad/sec$

corner frequencies,
$$w_{c1} = \frac{1}{0.4} = 2.5 \text{ rad/sec}$$

 $w_{c2} = \frac{1}{0.1} = 10 \text{ rad/sec}$

Magnitude Plot,

Basic Factors	corner freg rad/sec	slope db/dec	change in Slope, db/dec.
10	_	O	0
1/300	-	-20	0-20=-20.
1+0.47 W	Wc1=2.5	-20	-20-20 = -40

First Basic Ledox => 20log K = 20log 10 = 20db.

Phase plot. LGiw = -90-tan'o.4w-tan'o.1w.

rad/sec	0.1	t .	2.5	10	20
	-92	-118	-150	-210	-236

Solution.

Step 1 Starting and Ending Points.

Starting Points are Poles.

S=0, S²+4s+B=0

S=-2±5H#B.

Ending Points are Zeros => No Zeros.

=> S=0, P, Do

Step 2 Number of branch = Number of Poles.

Step 3 Symmetrical with respect to R-axis.

Scanned by CamScanner

Intersection point of Asymptote, T = S finite poles - S finite Zeros N-M = (0-2-2)-0 - -4 = 3-0-1-33Step S Root | das on real axis $x = \frac{1}{3} = -2 \text{ to } 0 \Rightarrow \text{ odd roots} \Rightarrow \text{ Yes}.$ $x = \frac{1}{3} = -2 \text{ to } 0 \Rightarrow \text{ odd roots} \Rightarrow \text{ Yes}.$ $x = \frac{1}{3} = -2 \text{ to } 0 \Rightarrow \text{ odd roots} \Rightarrow \text{ Yes}.$ $x = \frac{1}{3} = -2 \text{ to } 0 \Rightarrow \text{ odd roots} \Rightarrow \text{ Yes}.$ $x = \frac{1}{3} = -2 \text{ to } 0 \Rightarrow \text{ odd roots} \Rightarrow \text{ Yes}.$

In derivative feedback control, the actuating signal is the difference of proportional error signal and the derivative of the output signal.

$$e_a(t) = e(t) - K_t \frac{dc(t)}{dt}$$
 $E_a(s) = E(s) - K_t sC(s)$

0

The simplified block diagram is given by.

The characteristic equation is

$$s^2 + (2\xi\omega_n + K_t\omega_n^2)s + \omega_n^2 = 0$$

Therefore the effective damping ratio

$$2\xi'\omega_n = 2\xi\omega_n + K_t\omega_n^2$$

$$\xi' = \frac{2\xi\omega_n + K_t\omega_n^2}{2\omega_n}$$

$$\xi' = \xi + \frac{K_t\omega_n}{2}$$

The damping ratio increases, so the maximum overshoot is reduced.

We know that

$$\frac{E(s)}{R(s)} = \frac{1}{1 + G(s)H(s)}$$

$$\frac{E(s)}{R(s)} = \frac{1}{1 + \frac{\omega_n^2}{s^2 + (2\xi\omega_n + K_t\omega_n^2)s}}$$

$$\frac{E(s)}{R(s)} = \frac{s^2 + (2\xi\omega_n + K_t\omega_n^2)s}{s^2 + (2\xi\omega_n + K_t\omega_n^2)s + \omega_n^2}$$

$$\frac{E(s)}{R(s)} = \frac{s(s + 2\xi\omega_n + K_t\omega_n^2)s + \omega_n^2}{s^2 + (2\xi\omega_n + K_t\omega_n^2)s + \omega_n^2}$$

For ramp input
$$R(s) = \frac{1}{s^2}$$
$$E(s) = \frac{1}{s^2} \frac{s(s + 2\xi\omega_n + K_t\omega_n^2)}{s^2 + (2\xi\omega_n + K_t\omega_n^2)s + \omega_n^2}$$

Steady state error

$$e_{ss} = \lim_{s \to 0} sE(s)$$

$$= \lim_{s \to 0} s \frac{1}{s^2} \frac{s(s + 2\xi\omega_n + K_t\omega_n^2)}{s^2 + (2\xi\omega_n + K_t\omega_n^2)s + \omega_n^2}$$

$$= \frac{2\xi\omega_n + K_t\omega_n^2}{\omega_n^2} = \frac{2\xi}{\omega_n} + K_t$$

So with derivative feedback control the steady state error increases

4)

Correlation between Time and frequency response

CLTF (general expression),
$$M(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

Sinusoidal steady state, $s=j\omega$. Thus,

$$M(j\omega) = \frac{Y(j\omega)}{R(j\omega)} = \frac{G(j\omega)}{1 + G(j\omega)H(j\omega)}$$

Magnitude of $M(j\omega)$ is

$$|M(j\omega)| = \left| \frac{G(j\omega)}{1 + G(j\omega)H(j\omega)} \right|$$

Phase of $M(j\omega)$ is

$$\angle M(j\omega) = \angle G(j\omega) - \angle [1 + G(j\omega)H(j\omega)]$$

1. Resonant Peak, (M_r)

The resonant peak M_r is the maximum value of $M(j\omega)$. In general M_r gives indication of the relative stability. Normally, a large M_r corresponds to a large maximum overshoot of the step response.

2. Resonant Frequency, | M(jω)|

The resonant frequency ωr is the frequency at which the peak resonance Mr occurs.

3. Bandwidth, BW

The bandwidth BW is the frequency at which M(j\omega) drops to 70.7 % of, or 3 dB down from, its zero-frequency value. Generally, the bandwidth of a control system gives an indication of the transient response properties in time domain. A large BW corresponds to faster rise time, whereas small BW refers to slow and sluggish time response.

4. Cutoff Rate

Cutoff rate is the slope of $|M(j\omega)|$ at high frequencies.

6

2nd order system: M_r , j ω and BW are uniquely related to ζ and ω_n

$$M(j\omega) = \frac{Y(j\omega)}{R(j\omega)} = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n(j\omega) + \omega_n^2}$$
$$= \frac{1}{1 + j2(\omega/\omega_n)\zeta - (\omega/\omega_n)^2}$$

• By letting
$$\mathbf{u} = \boldsymbol{\omega} / \boldsymbol{\omega}_{\mathbf{n}}$$
,

• By letting
$$\mathbf{u} = \boldsymbol{\omega} / \boldsymbol{\omega}_{n}$$
, $M(j\omega) = \frac{1}{1 + j2u\zeta - u^2}$

• Magnitude of M(ju),
$$|M(ju)| = \frac{1}{[(1-u^2)^2 + (2\zeta u)^2]^{1/2}}$$

• ω_r can be found by

$$\frac{d|M(ju)|}{du} = 4u(u^2 - 1 + 2\zeta^2) = 0$$

$$u_r = \sqrt{1-2\zeta^2}$$
 , $\omega_r = \omega_n \sqrt{1-2\zeta^2}$, $\zeta < 0.707$

- Since frequency is a real quantity, the equation is meaningful only for 2 ζ^2 <1, or ζ <0.707
- •For all values of $\zeta > 0.707$, the resonant frequency is $\omega_r = 0$, and $M_r = 1$

$$M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}, \qquad \zeta < 0.707$$

• BW of prototype second order system is given by

$$BW = \omega_n \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

A summary of the relationships between the time-domain response and frequency domain characteristics of a second order system, is as follows:

- 1. The resonant peak Mr depends on ξ only. When ξ = 0, Mr is infinite. When ξ is negative, the system is unstable, and the value of Mr ceases to have any meaning. As ξ increases, Mr decreases.
- 2. For $\xi \ge 0.707$, Mr =1 and ω_r = 0. In comparison with the unit-step time response, the maximum overshoot also depends on ξ .
- 3. Bandwidth is directly proportional to ω_n . For the unit-step response, rise time increases as ω_n decreases. Therefore, BW and rise time are inversely proportional to each other.
- 4. Bandwidth and Mr are proportional to each other for $0 \le \xi \le 0.707$.