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‘Module-1
1 a. Explain the following terms:
(i) Total pressure (ii) Centre of pressure
(1i1) Gauge pressure i\ {iv}_Buuyan{:}f _ d i i _{_ﬂlﬂ- Ma:ks]'

The pressure on a fluid is measured in two different systems. In one system, it is measured above
the absolute zero or complete vacuum and it is called the absolute pressure and in other system,
pressure is measured above the atmospheric pressure and it is called gauge pressure. Thus :

1. Absolute pressure is defined as the pressure which is measured with reference to absolute
vacuum pressure.

2. Gauge pressure is defined as the pressure which is measured with the help of a pressure mea-
suring instrument, in which the atmospheric pressure is taken as datum. The atmospheric pressure on
the scale is marked as zero.

Total pressure is defined as the force exerted by a static fluid on a surface either plane or curved
when the fluid comes in contact with the surfaces. This force always acts normal to the surface.

Centre of pressure is defined as the point of application of the total pressure on the surface. There
are four cases of submerged surfaces on which the total pressure force and centre of pressure is to be
determined. The submerged surfaces may be :

1. Vertical plane surface,

2. Horizontal plane surface,
3. Inclined plane surface, and
4

. Curved surface.

> 4.2 BUOYANCY

When a body is immersed in a fluid, an upward force is exerted by the fluid on the body. This
upward force is equal to the weight of the fluid displaced by the body and is called the force of
bhuoyancy or simply buoyancy.

b. Derive r:xprcssmn for total pressure force and centre’of pressure act on a vertical surtace
immersed in static fluid. (08 Marks)



» 3.3 VERTICAL PLANE SURFACE SUBMERGED IN LIQUID
Consider a plane vertical surface of arbitrary shape immersed in a liquid as shown in Fig. 3.1.
Let A= Total area of the surface
h = Distance of C.G. of the area from free surface of liquid
& = Centre of gravity of plane surface
P = Centre of pressure
h* = Distance of centre of pressure from free surface of liguid.

(a) Total Pressure (F). The total pressure on the surface FREE SURFACE OF Llc:un::
may be determined by dividing the entire surface into a number
of small parallel strips. The force on small strip is then calcu-
lated and the total pressure force on the whole area is calculated
by integrating the force on small strip.

Consider a strip of thickness dh and width & at a depth of &
from free surface of liquid as shown in Fig. 3.1

Pressure intensity on the strip, P = pegh
{See equation 2.5)
Area of the strip, dA = b % dh
Total pressure force on strip, dF = p % Area
=pghx b xdh

Total pressure force on the whole surface,

F:de=ngh xbxdh=pgjb % h X di

But behxdﬁ:_[hxcm
= Moment of surface area about the free surface of liguid
= Area of surface = Distance of C.G. from free surface
=Axh

F = pgAh (3.1
Fnr water the value of p= Iﬂﬂﬂ kg.l’m and g = 9. SI m.f\ The. force will be in Newton.



c.

(£} Centre of Pressure (h¥*). Centre of pressure is calculated by using the *Principle of Moments”,
which states that the moment of the resultant force about an axis is equal to the sum of moments of the
components about the same axis.

The resultant force F is acting at P, at a distance h® from free surface of the liquid as shown in

Fig. 3.1. Hence moment of the force F about free surface of the liquid = F = &* ~(3.2)
Moment of force dF, acting on a strip about free surface of liquid
=dF=h [~ dF =pghxbxdh}

=pghxbxdhxh

Sum of moments of all such forces about free surface of liguid

:nghxbxa‘hxh=pgjbxﬁxhd}:

= pgjbh"—a!a =pg th dA (+ bdh= dA)
But thzd.ﬂ. = [onan
= Moment of Inertia of the surface about free surface of liquid
= Iu
Sum of moments about free surface
= pgl, ~(3.3)
Equating (3.2) and (3.3), we get
Fx h* = pgly
But F = pgAh
pgAh x h* = pgl,
or pr= P&l _ T (3.4)
pgAh  Ah

By the theorem of parallel axis, we have
where [; = Moment of Inertia of arca about an axis passing through the C.G. of the arca and parallel
tor the free surface of liguid.

Substituting [, in equation ({3.4), we get

32
—IG * i”I = !—G_ + E
Ah Ah

In equation (3.5), h is the distance of C.G. of the area of the vertical surface from free surface of
the liguid. Hence from equation (3.5), it is clear that :
(i} Centre of pressure (i.e., h*} lies below the centre of gravity of the vertical surface.
(if) The distance of centre of pressure from free surface of liquid is independent of the density of the
liquid.

h* =

e 3.3)

Discuss on fluid pressure measuring devices. (04 Marks)



» 2.5 MEASUREMENT OF PRESSURE

The pressure of a fluid is measured by the following devices @
1. Manometers 2. Mechanical Gauges.
2.5.1 Manometers. Manometers are defined as the devices used for measuring the pressure at
a point in a fluid by balancing the column of fluid by the same or another column of the fluid. They are
classified as :
{a) Simple Manometers, (&) Differential Manometers.

2.5.2 Mechanical Gauges. Mecchanical gauges are defined as the devices used for measuring
the pressure by balancing the fluid column by the spring or dead weight. The commonly used mechani-
cal pressure gauges are :

(a) Diaphragm pressure gauge, (&) Bourdon tube pressure gauge,

(¢} Dead-weight pressure gauge, and (d) Bellows pressure gauge.

» 2.6 SIMPLE MANOMETERS

A simple manometer consists of a glass tube having one of its ends connected to a point where
pressure s to be measured and other end remains open to atmosphere, Common types of simple ma-
nometers are :

1. Piezometer,’

2. U-tube Manometer, and

3. Single Column Manometer,

2.6.1 Piezometer. Itis the simplest form of manometer used for
measuring gauge pressures. One end of this manometer is connected to
the point where pressure is to be measured and other end is open 10 the
atmosphere as shown in Fig, 2.8, The rise of liguid gives the pressure
head at that point. If at a point A, the height of liquid say water is It in
piezometer tube, then pressure at A

_pxg!{ F.

Fig. 2.8 Frezomeler.

2.6.2 U-tube Manometer. It consists of glass tube bent in U-shape, one end of which is
connected to a point at which pressure is to be measured and other end remains open to the
atmosphere as shown in Fig. 2.9, The wbe generally contains mercury or any other liguid whose
specific gravity is greater than the specific gravity of the liguid whose pressure is to be measured.

[a) For gauge pressure (b) For vacuum pressure

Fig. 2.9 U-tube Manometer.



2.6.3 Single Column Manometer. Single column manometer is a modified form of a U-tube
manometer in which a reservoir, having a large cross-sectional area (about 100 times) as compared to
the area of the wbe is connected to one of the limbs (say left limb) of the manometer as shown in Fig. 2.15.
Due to large cross-sectional area of the reservoir, for any variation in pressure, the change in the liquid
level in the reservoir will be very small which may be neglected and hence the pressure is given by the
height of liquid in the other limb. The other limb may be vertical or inclined. Thus there are two types
of single column manometer as :

l. Vertical Single Column Manometer.

2. Inclined Single Column Manometer.

» 2.7 DIFFERENTIAL MANOMETERS

Differential manometers are the devices used for measuring the difference of pressures between
two points in a pipe or in two different pipes. A differential manometer consists of a U-tube, contain-
ing a heavy liquid, whose two ends are connected to the points, whose difference of pressure is to be
measured. Most commonly types of differential manometers are :

l. U-tube differential manometer and

2. Inverted U-tube differential manometer.

OR

2 a. Explain the Fulerian and Langragian method of fluid flow analysis with suitable example.
(08 Marks)

» 5.2 METHODS OF DESCRIBING FLUID MOTION

The fluid motion is described by two methods. They are —(7) Lagrangian Method, and {if} Eulerian
Method. In the Lagrangian method, a single fluid particle is followed during its motion and its
velocity, acceleration, density, ete., are described. In case of Eulerian method, the velocity, accelera-
tion, pressure, density etc., are described at a point in flow field, The Eulerian method is commonly
used in fluid mechanics.

b. Derivethe 3-dimensional flow continuity equation in cartesian coordinates. (08 Marks)



B 5.6 CONTINUITY EQUATION IN THREE-DIMENSIONS

Consider a fluid element of lengths dx, dy and 47 in the direction of x, v and 7. Let u, v and w are the
inlet velocity components in x, y and z directions respectively. Mass of fluid entering the face ABCD
per second

= p % Velocity in x-direction x Area of ABCD
=p o uxidy = dz)

Then mass of fluid leaving the face EFGH per second = pu dydz -I-ai {pu dydz) dx
X

(ain of mass in x-dircction
= Mass through ABCD - Mass through EFGH per second

d
= pu dvdz — pu dvdz — — (pu dydz)dx
x

G
d
=- a— {pu dydz) dx
x 2
=- j—x (pu) dx dyd: { - dvdz is constant)
Similarly, the net gain of mass in y-direction D H ¥

E dz

d
=— E (pv)ydedydz | ¢l | » =X

and in z-direction == i (pw) dedyds
dz ’ Fig. 5.6

Net gain of masses = _[;_x (pu)+ % (pv)+ Eiiz (pw) | dxdydz

Since the mass is neither created nor destroyed in the fluid element, the net increase of mass per unit
time in the fluid element must be equal o the rate of increase of mass of fluid in the element. But mass



d
of fluid in the clement is p. dr. dy. dz and its rate of increase with time isﬁ (p dx. dy. dz) or

ap
— . dz.
3 dx dyv dz
Equating the two expressions,
I (R P
or E+ i (pu) + i{pv] + i (pw) = 0 [Cancelling dx.dy.dz from both sides] ...(5.34)
dt dx dy oz

Equation (5.34) is the continuity equation in cartesian co-ordinates in its most general form. This
equation is applicable to :
() Steady and unsteady flow,
(i) Uniform and non-uniform flow, and
(iiiy Compressible and incompressible fluids,

dp

For steady HEW'E = () and hence equation (5.34) becomes as
d d d
— D - | —_— -
w (p }+5‘y (pv) + % (pw) =0 ..(5.3B)
If the fluid is incompressible, then p is constant and the above equation becomes as
du dv  dw
—t—t—=1) 54
FRRF N G4

Equation (5.4) is the continuity equation in three-dimensions. For a two-dimensional flow, the com-
ponent w = 0 and hence continuity equation becomes as

Ly, (5.5)

o dy

¢. Calculate the velocity of fluid flow at a point (2, 3) if'its,2-D flow stream function is given
by w = 2xy. (04 Marks)



Problem 5.14 The stream function for a two-dimensional flow is given by W = 2xv, calculate the

velacity at the point P (2, 3). Find the velocity potential function .

Solution. Given : g = 2y
The velocity components u and v in terms of W are

dyr d
=—¥__ 2 x)=-2
u 3y ay“”

v 9
= ——— = 2.
v=ol axibﬂ v
At the point P (2, 3), we getu = — 2% 2 = — 4 units/sec

#=2x 3 =6 unitsfsec

Resultant velocity at P =,/u® 4% = J42 +6% = /16 + 36 =+/52 = 7.21 units/sec.

Velocity Potential Function ¢

We know ﬂ=—:.:=—-f—1x}=lx
ox
o
— =—y=-2
dy ! Y
Integrating equation (i), we get
[ do =] 2xdx
or = Ezi +C=x"+C
where C is a constant which is independent of x but can be a function of y.
Differentiating equation (i) w.r.t. "y, we get a—¢= a_,c-
gy dy
But from (ii), *__ 2y
3y
dC
dy
21’2 2

Integrating this equation, we get C = J- 2y dy =—T ==y

Module-2

3 a. Derive the Euler's equation of fluid motion-and hence deduce Bemoulli’s equation.

)]

il

wal D)

(10 Marks)



» 6.3 EULER'S EQUATION OF MOTION

This is equation of motion in which the forces due o gravity and pressure are taken into considera-
tion. This is derived by considering the motion of a fluid clement along a stream-line as @

Consider a stream-line in which flow is taking place in s-direction as shown in Fig. 6.1, Consider a
cylindrical element of cross-section 4 and length ds. The forces acting on the cylindrical element are:

1. Pressure force pdA in the direction of flow.

d.

3. Weight of element pgdAds,

Let 8 is the angle between the direction of flow and the line of action of the weight of element.

The resultant force on the fluid element in the direction of 5 must be equal to the mass of fluid
element = acceleration in the direction 5.

2. Pressure force [p+ a—pds) dA opposite to the direction of flow,
&)

5
pdA - [p+ %d&] dA — pgdAds cos 8

= pddds x a, a6.2)
where a, is the acceleration in the direction of s.

dv . .
Now 5= where v is a function of s and 7.

dvds dv  wvdv dv { ds }
t— = b A — =
ds dt ot ds ot

" E -
, dv
If the flow is steady, 3_ = ¥
I
vdv
a; = E

Substituting the value of o, in equation (6.2) and simplify-
ing the cquation, we get

podAda
P . L (a) (b)
s dsdA = pg dAds cos 6 = pdAds x ds Fig. 6.1 Forces on a fluid element.
oy e LA Wel 4 WILED WRE U ERE LEEFRE RS
Dividing by pdsdA, - % —gcosB= %
dp dv
or E+gcusﬂ+1as—
But from Fig. 6.1 (B), we have cos 8 = ?
b
1 dp dz  wdv dp
. — g —— =1 — 4+ gdz +vdv=10
pods gci.'r ds o p gde vy
or lﬂ!'—";l+ gdz + vdv =10 LAB3)
p

Equation (6.3) is known as Euler's equation of motion.



» 6.4 BERNOULLI'S EQUATION FROM EULER'S EQUATION
Bernoulli's equation is obtained by integrating the Euler’s equation of motion (6.3) as
Id—p + Jgdz + -[vd'v = constant
1]

If flow is incompressible, p 15 constant and
2

P v
- + gz 4 — = constant
p 2
b2
or L, 7+ — = constant
PE 22
or £+v_ + 7 = constant 0.4
pe  2g
Equation (6.4) is a Bernoulli’s equation in which
£ _ pressure energy per unit weight of fluid or pressure head.
pe

vzﬂg = kinetic energy per unit weight or Kinetic head.
z = potential energy per unit weight or potential head.

» 6.5 ASSUMPTIONS

The following are the assumptions made in the derivation of Bernoulli's equation :
(i) The fluid is ideal, i.e., viscosity is zero (i) The flow is steady
(#ii) The flow is incompressible (iv) The flow is irrotational.

- - = = : = s £l

OR
a. Derive expression for discharge through a triangularnoteh. : _ (10Marks)



» 8.4 DISCHARGE OVER A TRIANGULAR NOTCH OR WEIR

The expression for the discharge over a triangular notch or weir is the same. It is derived as :
Let H = head of water above the V- notch

8 = angle of notch
Consider a horizontal strip of water of thickness “df" at a depth of & from the free surface of water
as shown in Fig. 8.3,
From Fig. 8.3 (&), we have

B AC AC
an — = —=
2 0C (H-h)

7} xl}—ih
AC=(H = #) tan 5 iy

]
(b}
Fig. 8.3

Width of strip =AB=2AE=2{H—.F!]IBII§

The triangular noich.
.~ Area of strip =2 (H- k) tan g ® dh

The theoretical velocity of water through strip = /2gh
. Discharge, through the strip,

d() = C,» Area of strip x Velocity (theoretical)

=C'n,x2(H—h]tannghx.“l'Egh
8
=2f:d{H-h}tan§x 2gh xdh

H
- Total discharge, 0= L 2C; (H - k) tan gx J2gh = dh

H
= 2C, % tan gxﬁjﬂ (H - k' dh

H
=2x C,x tan gx V2 _L (HR"Z = ) dh

0 HRYE p2 H
=2 % C,xtan —x .2, -
S ’E[ 32 5;2}

o



zzxcdxm“ ngQ_g EHiHJIZ_EHSII}

=1xcdxmngxﬁ -

zzxcdxmngx_vlrz_g iHSIZ}

8 8
15 C,;x tan 2% 2g x H" -(8.2)

For a right-angled Venotch, if C, = 0.6

0=90°, - tan 2 =1
>

Discharge, 0= % % 0.6 % 1 x 2x081 x H" (8.3)
= 1417 H".

b. A horizontal venturimeter of 20, ¢m inlet diametér.and 10 cm throat diameler 1s used 10
measure.an oil flow. The(discharge of oil through venturimeter is 60 lit's. Il';.sa.]w.llalf: the
reading of oil-mercury differeéntial manometer. Take Cy = 0.98 and specific gravity = 0.8.

{10 Marks)
Solution. Given : d,=20cm
a,= ; 207 = 314.16 cm®

dy =10 cm



u—Exlﬂ'-?Sjﬁfcm

C, =098
@ = 60 litres/s = 60 x 1000 cm?/s
Using the equation (6.8), @=C, &, 2gh
f11 = 4a;
or 60 % 1000 = 0.81 x —— 46X poggrsy - 107106878V%
\'[{:114.“5:]!1 —(78.54) 304
304 x 60000
h="——— =17.029
m Jh 1071068.78 02
h=(17.029)° = 289.98 cm of oil
S
But h=xl 2=
1 I|:Su :|

where &, = Sp. gr. of mercury = 13.6
§,=Sp. gr. of oil = 0.8
x = Reading of manometer

289.98 = x [ﬂ- 1} = 161
08

= M = 18.12 cm

16

* Reading of oil-mercury differential manometer = 18.12 cm. Ans.

Module-3

5 a Derive Hagen Poiseulle equation for laminar flow through a -::in:q_lar pipe. _ (10 .I\'lﬂ.rl.:lsj

» 9.2 FLOW OF VISCOUS FLUID THROUGH CIRCULAR PIPE

For the flow of viscous fluid through circular pipe, the velocity distribution across a section, the
ratio of maximum velocity to average velocity, the shear stress distribution and drop of pressure for a
given length is to be determined. The flow through the circular pipe will be viscous or laminar, if the
Reynolds number (R,*) is less than 2000, The expression for Reynold number is given by

_pvD
“on
where p = Density of fluid flowing through pipe

V = Average velocity of fluid
D = Diameter of pipe and
L = Viscosity of fluid.
DIRECTION _ ;

OF FLOW p_. n%‘—i y ar
TI:D‘ r:I_I:Il‘l"ll'::lﬂ) l\\_

."p | g
por

':-ch:r_u

- —

i) it}
Fig. 9.1 Viscous flow through a pipe.



Consider a horizontal pipe of radius R. The viscous fluid is flowing from left to right in the pipe as
shown in Fig. 9.1 (a). Consider a fluid element of radius r, sliding in a cylindrical fluid element of

radius (r + dr). Let the length of fluid clement be Ax, If *p’ is the intensity of pressure on the face AB,

. . . g
then the intensity of pressure on face CD will be [ p+ Epﬁ'ur . Then the forces acting on the fluid

element are :
1. The pressure force, p x nr” on face AB.

d
2. The pressure force, [p + ap ﬂx) 7r* on face CD.

3. The shear force, T = 2nrAx on the surface of fluid element. As there is no acceleration, hence the
summation of all forces in the direction of flow must be zero ie.,

pmz—[p+a—pm]nr2—rx2mx:1x:l]

dx
or —a—p&mrz—txzzrxﬁx=ﬂ
ox
or —%.r—z‘t:l}
__9%r
S oax 2 ~(9:1)
9P

The shear stress T across a section varies with *r* as across a section is constant, Hence shear

X
stress distribution across a section is linear as shown in Fig. 9.2 (a).

SHEAR STRESS WELOCITY
DISTFEIBUT\I)GN /DISTFEIBUTICIN

= )
o

(
(
2} {b)

Fig. 9.2 Shear stress and velocity distribution across a section.
() Velocity Distribution. To obtain the velocity distribution across a section, the value of shear

()

LY

stress T=H %‘ is substituted in eguation (9.1).

. . il . .
But in the relation T=p E" v is measured from the pipe wall. Hence

y=K-r and dv=—dr
T=q du du
S —dr udr

Substituting this value in {9.1), we get



E__a_pi or du lEI'p
dr dx 2 dr 2uax

Integrating this above eguation w.r.t. *r’, we get
= —-—r'+C -(9.2)

where C is the constant of integration and its value is obtained from the boundary condition that at
r=R,u=1(.

1 dp

= R*+C
4p dx
- 1 ap e
4]4 dx
Substituting this value of C in equation (9.2), we get
0= 1 El'p 1 dp
m ax 4y ax
B R PR (9.3)
4p dx

In equation (9.3), values of p, g— and R are constant, which means the velocity, u varies with the

square of r. Thus equation (9.3) is a equation of parabola. This shows that the velocity distribution
across the section of a pipe is parabolic. This velocity distribution is shown in Fig. 9.2 ().
(i) Ratio of Maximum Velocity to Average Velocity. The velocity is maximum, when r = 0 in
equation (9.3). Thus maximum velocity, I, is obtained as
__1ap R?

L 0.4
4u dx {

max
The average velocity, u, is obtained by dividing the discharge of the fluid across the section by the
area of the pipe (RR%). The discharge () across the section is obtained by considering the flow through

a circular ring element of radius r and thickness dr as shown in Fig. 9.1 (#). The fluid flowing per
second through this elementary ring

d? = velocity at a radius r % area of ring element
= X 2mr dr

L op e
= an ax[R r] % 2nr dr

0= J d = I lap (R* = ¥*y x 21t dr
[ ap]xzn_[ (R%= 1) rdr

1
4|_1

-L[i] xan (R%r - ") dr
4.“



_ (=9 Ll R ﬂ) R _R
‘@[ax)xz“{ 2 4|, 4|.l[E|r Sl e
_ (o _r ﬂ] ‘
_4”[ ax]xhx 2 _Sp[&x R
5 ()
Average velocity, u= 0 _8u &xz
Area nR
or i é(%] R (9.5)
Dividing equation (9.4) by equation {9.5),
1 dp
_ L %R
Urﬂﬂ: 4“ &r
man =20
i L[_H_PJR’
S\ dx

Ratio of maximum velocity to average velocity = 2.0.
(iif) Drop of Pressure for a given Length (L) of a pipe

From equation (9.5), we have

1 [—ap] 2 o (-ap] Suu ;ﬁf ?

“= E dx 3 =F—- By p;.i |:n'
Integrating the above eguation w.r.L x, we gel — _1 |
[ e .
b : R° f— ¥s -
u M Fig. 9.3
= [p=pal = E:;_ [x, = x;lor(p, - py)= % [x - x]
- % L {*+ x,-x =L from Fig. 9.3}
_ S'I-lul’.2 { R =E}
(D/2) 2
or P —pa) = 32;:_‘{'. where p; — p, is the drop of pressure.
Loss of pressure head i 3
PE
Pops 32l 06
PE pgD

Equation (9.6) is called Hagen Poisenille Formula.

b. A crude oil flowing through a horizontal circular pipe of 10 cm diameter and 100 cm length.
Assume laminar flow and calculate pressure drop if 100 kg oil collected in a tank in

30 seconds. Take viscosity = 0.97 N-S/m’ and specific gravity = 0.9. (10 Marks)



0.97

Solution. Given : W=097 poise = == = 0.097 Ns/m*
Relative density =09
Py Or density, =10.9 % 1000 = 900 kg/m*
Dia. of pipe, D =100 mm = 0.1 m
L=10m
Mass of oil collected, M=100kg
Time, t= 30 seconds

Calculate difference of pressure or (p) — py).
The difference of pressure (p| — p,) for viscous or laminar flow is given by

P—pa= 32;;"[', where u = average velocity = Aﬂ%
Now, mass of oilfsec = 100 kpfs
30
=P xQ@=900x¢Q (' pp=900)
100
— =900
30 *Q
100 1 3
= — K —— = (0037 m/s
=30 500 e
-__ ¢ =,1(t]ﬂ3? _ ;fﬂ}_’a? = 0471 wis.
Area T pt _{r”z
4 4
“ 4

For laminar or viscous flow, the REeynolds number (£,) is less than 2000. Let us calculate the
Reynolds number for this problem.

Reynolds number, R*= @
u
where  p=p, =900, V= u=0471,D=0.1m,p=0.0097
AT1x0]
R, =900 x 2T1XO0L _ 43691

0.097
As Reynolds number is less than 2000, the flow is laminar,

2pul. 32 %0097 x 471x 10
PL-Pa= H —= . N/m?
D (1)
= 1462.28 N/m” = 1462.28 = 10~ * N/em” = 0.1462 N/em®. Ans.

OR
a. Discuss the energy losses that occur in pipe flow. Il (10 lﬂur!:s}



» 11.2 LOS5 OF ENERGY IN PIPES

When a fluid is flowing through a pipe, the fluid experiences some resistance due to which some of
the energy of fluid is lost. This loss of energy is classified as @

Energy Losses
I
[}
1. Major Energy Losses 2. Minor Energy Losses

This is due to friction and it is This is due to
calculated by the following (&) Sudden expansion of pipe
formulae : (B} Sudden contraction of pipe
(a) Darcy-Weisbach Formula {¢) Bend in pipe
{b) Chezy's Formula {ch Pipe fitlings etc.

() An obstruction in pipe.

» 11.4 MINOR ENERGY (HEAD) LOSSES

The loss of head or energy due to friction in a pipe is known as major loss while the loss of energy
due to change of velocity of the following fluid in magnitude or direction is called minor loss of
energy. The minor loss of energy (or head) includes the following cases :

Loss of head due to sudden enlargement,
Loss of head due to sudden contraction,
Loss of head at the entrance of a pipe,

Loss of head at the exit of a pipe,

Loss of head due to an obstruction in a pipe,
Loss of head due to bend in the pipe,

. Loss of head in various pipe fittings.

In case of long pipe the above losses are small as compared with the loss of head due to friction and
hence they are called minor losses and even may be neglected without serious error, But in case of a
short pipe, these losses are comparable with the loss of head due to friction.

SR

b. Derive Dnrcy—WE:-isbach equation for determining loss of head due to friction. (10 Marks)

» 11.3 LOSS OF ENERGY (OR HEAD) DUE TO FRICTION

(@) Darcy-Weisbach Formula. The loss of head (or energy) in pipes due to friction is calculated
from Darcy-Weisbach equation which has been derived in chapter 10 and is given by

hy=2d eV L1111
T T dx2g !

where hf= loss of head doe to friction



T
n

co-efficient of friction which is a function of Reynolds number

6
JT for R, < 2000 (viscous flow)

07
= T% for R, varying from 4000 to 10°

L = length of pipe,
V¥ = mean velocity of flow,
d = diameter of pipe.

{b) Chezy's Formula for loss of head due to friction in pipes. Refer to chapter 10 article 10.3.1
in which expression for loss of head due to friction in pipes is derived. Equation (i) of article 10.3.1, is

" P
ﬁf=f—x—x£.><'.f*2 L (11.2)
pg A
where /i, = loss of head due to friction, P = wetted perimeter of pipe,
A = area of cross-section of pipe, L = length of pipe,

and V = mean velocity of flow,

Module-4
7 a. Explain the following terms: _
(i) Boundary layer thickness (ii) Streamline body (111} Bluff body
(iv) Lift (v) Drag (10 Marks)

-ao~

13.2.4 Boundary Layer Thickness (8). It is defined as the distance from the boundary of the
solid body measured in the y-direction to the point, where the velocity of the fluid is approximately
equal to (.99 times the free stream velocity (L) of the fluid. It is denoted by the symbol &. For laminar
and turbulent zone it is denoted as :

1. &, = Thickness of laminar boundary layer,

2. &, = Thickness of turbulent boundary layer, and

3. & = Thickness of laminar sub-layer.



14.3.3 Stream-lined Body. A stream-lined body is defined as that body whose surface
coincides with the stream-lines, when the body is placed in a flow, In that case the separation of flow
will take place only at the trailing edge (or rearmost part of the body). Though the boundary layer will
start at the leading edge, will become wrbulent from laminar, yet it does not separate upto the rearmost
part of the body in the case of stream-lined body. Thus behind a stream-lined body, wake formation
zone will be very small and consequently the pressure drag will be very small. Then the total drag on
the stream-lined body will be due to friction (shear) only. A body may be stream-lined :

1. at low velocities but may not be so at higher velocities.

2. when placed in a particular position in the flow but may not be s0 when placed in another

position.

14.3.4 Bluff Body. A bluff body is defined as that body whose surface does not coincide with
the streamlines, when placed in a flow. Then the flow is separated from the surface of the body much
ahead of its trailing edge with the result of a very large wake formation zone. Then the drag due to
pressure will be very large as compared to the drag due to friction on the body. Thus the bodies of such
a shape in which the pressure drag is very large as compared to friction drag are called bluff bodies.

14.2.1 Drag. The component of the total force (Fg) in the direction of motion is called *drag’.
This component is denoted by F,. Thus drag is the force exerted by the fluid in the direction of motion.

14.2.2 Lift. The component of the total force (Fg) in the direction perpendicular to the direction
of motion is known as ‘lift". This is denoted by F,. Thus lift is the force exerted by the fluid in the
direction perpendicular to the direction of motion. Lift force occurs only when the axis of the body is
inclined to the direction of fluid flow. If the axis of the body is parallel to the direction of fluid flow, lift
force is zero. In that case only drag force acts.

If the fluid is assumed ideal and the body 18 symmetrical such as a sphere or ¢ylinder, both the drag
and lift will be zero.

b. Deduce an expression for pressure drop (dp) in a pipe/flow using Buclﬁinghgm's . - theorem
if fluid has velocity (V), viscosity (u) and density*(p). Consider pipe diameter (D) and
length (L). ) (10 Marks)



Solution. This problem is similar to problem 12.10). The only difference is that Ap is to be calcu-
lated for viscous flow. Then in the repeating variable instead of p, the fluid property U is to be chosen.
MNow Ap is a function of D, [, V, p, por Ap =D, [ V, W, p)

or Fi(Ap. DLV, p) =0 i)
Total number of variables, n=6
Number of fundamental dimensions, m = 3
Number of ®-terms =n-3=6-3=3
Hence equation (i) is written as f,(T,, Ty, T3) = 0 i)

Each m-term contains m + 1 variables, f.e., 3 + 1 = 4 variables. Out of four variables, three are
repeating variables.

Choosing D, V, U as repeating variables, we have m-terms as

m, =D VN S Ap

m, = D%V p

m, = D™ . VP .0 p
First m-term mo= DY Vh S Ap
Substituting the dimensions on both sides,

MULUT = 1 e ML T ML T

Equating the powers of M, L, T on both sides,

Power of M, O=¢ +1, oop=-=1
Power of [, O=a;+b;-c;-1, Soays=bi+oy+l=1-1+1=1
Power of T, O0=-b,-¢, -2, Soby=—o-2=1-2=-1

Substituting the values of @), b, and ¢ in 7,

- - Dap
:D|1v|_ I. e
L KoL Ap v

Second m-term m, = D% Vi |
Substituting the dimensions on both sides,

ML T = L% (LT MLT'T Y L L
Equating the powers of M, L, Ton both sides

Power of M, 0=c,, Sooop=10
Power of L, O=a,+by—ca+l, o apy=-bi+ca-1=-1
Power of T, O=-b,—0c, s ba=—=0

Substituting the values of a,, b, and ¢, in 7,



HZ:D",W.LL“,I:%,

Third n-term M= D% VR pSp
Substituting the dimension on both sides,

MOLPTY = 1% (e ML T L ML
Equating the powers of M, L, T on both sides

Power of M, O=cy+1, Soop=-1
Power of L, O=ay+by—c3-3, Soay=—bytey+3=-1-143=1
Power of T, 0==5y-rcy SLoby=—a==-(=1)=1

Substituting the values of a,, &y and ¢4 in 75,
DV
=DV .p' p= P
u
Substituting the values of m;, T, and 7, in equation (if),

DAy 1 pDVY_o o DAy _ [ oppV] o v [1 pDV
f’[w'ﬂ‘u]_n uv ¢[D u} ﬂ"u_ﬂ‘b[ﬂ’u]

Experiments show that the pressure difference Ap is a linear function i Hence L can be taken

out of the functional as

Ap ﬂ,@,[ﬂ} Ans

D D 11
Expression for difference of pressure head for viscous flow
n=2 = By x—q:um { —“DV=RE}
pg D “Dp n
Vi
= EL50 R Ans.
OR
8 a. Explain the following terms: ’

(i) Pchmald’s number (i1) Froude’s number (ii1) Euler’s number
(iv) Weber’s number (v) Magh number (10 .\:Iaﬁ;s]l

Dimensionless numbers are those numbers which are obtained by dividing the inertia force by
viscous force or gravity force or pressure force or surface tension force or elastic force. As this is a
ratio of one force to the other force, it will be a dimensionless number. These dimensionless numbers
are also called non-dimensional parameters. The followings are the important dimensionless numbers :

1. Reynold's number, 2. Froude's number,

3. Euler's number, 4. Weber's number,

5. Mach’s number.



12.8.1 Reynold’s Number (R,). It is defined as the ratio of inertia force of a flowing fluid and
the viscous force of the fluid. The expression for Reynold’s number is obtained as

Inertia force (F)) = Mass x Acceleration of flowing fluid
Velocit YVolum
=p * Volume x C_uu Y - px _u © % Velocity
ime Time
=pxAVxV [+ Volume per sec = Area x Velocity = A x V}
= pAlf’z L1200
. peiY
Viscous force (F ) = Shear stress © Arca vOT=H d_ .. Force =1 x Area
¥
=TxA
i v di ¥V
=(l—|x®xA=1.—xA Vo—=—
dy L dy L
By definition, Reynold’s number,
F, pAVE  pVL
RE =i = 1-"— -t
Fop.txa M
L

VxIL VxL { M . L }
= = +»  —=v=Kinematic viscosity
(wip) v p

In case of pipe flow, the lincar dimension L is taken as diameter, . Hence Reynold’s number for
pipe flow,

Rp=m or ﬂ W 12012)

v n
12.8.2 Froude's Number (F,). The Froude's number is defined as the square root of the ratio
of inertia force of a flowing fluid to the gravity force. Mathematically, it is expressed as

where F, from equation (12.11) = pAV?

and  F, = Force due to gravity
= Mass x Acceleration due to gravity
=px\-’nlumexg=pr]xg i ‘l."ulume=L]}
:pXLEXLXg:pXAXLXR [+ L'=A= Area)

i F pavt vy
F,= '_': i = | ~(12.13)
Foo VpAlg \iLg Lg

12.8.3 Euler’'s Number (E,). It is defined as the square root of the ratio of the inertia force of a
flowing fluid to the pressure force. Mathematically, it is expressed as

E,= |4

P
where Fp = Intensity of pressure < Area=px A

and  F,=pAV*
E,= pav: _ |V V¥ (12.14)
“"Npxa Ypip Jelp o




1 vroor viroor
12.8.4 Weber's Number (W_). Itis defined as the square root of the ratio of the inertia force
of a flowing fluid to the surface tension force. Mathematically, it is expressed as
. £
Weber's Number, W, = |—
F;
where F; = Inertia force = pAV*
and  F, = Surface tension force

= Surface tension per unit length x Length=o % L

2 . 2
WFJpAV =Jpr xV o oa=rY
oxL

ax L

_J@xvz_ LA (12.15)
G o/pL Jo/pL’ R

12.8.5 Mach's Number (M). Mach's number is defined as the square root of the ratio of the
inertia force of a flowing fluid to the elastic force. Mathematically, it is defined as

M= Inertia force _ | F,
Elastic force F,
where F;= pAVI

and  F, = Elastic force = Elastic siress x Area

=KxA=KxL* {» K = Elastic stress)
Mo | PAY _lpxLxVvi (V¥
“Vkx? \ kxIP  \kip JKip
But E = ' = Velocity of sound in the fluid
vV
M=—. A 12.16)
C (
(1v) Weber's number WV VIS Lwnwesw e ey

A flat plate 1.5 m x 1.5 m moves at 50 km/hr in stationary air of density 1.15 kg/m’. The
coefficients of drag and lift are (015 and 0.75 respectively. Compute:

(i) Lift force

(i1) Drag force

(1) Resultant force : ‘ _ RY

(iv) Power required to’keep the plate in motion. EENR IT IELIEI}EMT (10 Marks)



Problem 14.1 A flat plate 1.5 m x 1.5 m moves at 50 km/hour in stationary air of density 1.15 kgimt'. If
the co-efficients of drag and lift arve 0,15 and 0.75 respectively, determine :
(i} The lift force, (ii) The drag force,
(iii} The resultant force, and
{iv) The power required to keep the plate in motion.
Solution. Given :

Area of the plate, A=15x15=225m’
Velocity of the plate, U= 50 km/hr = % m/fs = 13.89 m/s
Density of air p = 1.15 kg/m”
Co-efficient of drag, Cp=0.15
Co-efficient of hift, Cp, =075
(i) Lift Force (F ). Using equation (14.4),
2 2
F=CAxPY" _075x225x w N = 187.20 N. Ans.

(i) Drag Force (Fp). Using equation {14.3),

2 b
PU” 015 %225 x M3 X1389° 0 37 44, N. Ans.

Fp=ChoAxX
(ifi) Resultant Force (F ). Using equation (14.5),
Fp=F2+F2 =437447 +18720° N

= /1400 + 35025 = 190.85 N. Ans.

(iv) Power Required to keep the Plate in Motion
Force in the direction of motion x Velocity KW

F=
1000
- o xU _37425X1389 w519 kW. Ans.
1000 1000
Module- . _ T I
0 a Show that veloeity of elastic wave propagation in an adiabatic medium is given by

(10 Marks)

- = e - " i OA BN Teee o M nsamande

C:vl‘}'RT.



15.4.4 Velocity of Sound for Adiabatic Process. Adiabatic process is given by
equation (15.4), as

P o_ ! k_ .
= Constant or pp " = Constant

P

Differentiating the above equation, we get
pkp* tdp+ptdp=0

Dividing by p'*. we gel — pkp" dp + dp=0ordp= %‘t dp

P _P =g [ E:RT]
dp p P
= kRT
Substituting the value of j—g in equation (15.15), we get C = ART . L 1518)

Mote 1. For the propagation of the minor disturbances through air, the process 15 assumed to be adiabatic,
The velocity of the disturbances (pressure waves) through air is very high and hence there is no time for any
appreciable heat transfer.

2. Isothermal process is considered for the caleulation of the velocity of the sound waves {or pressure
waves) only when it is given in the numerical problem that process is isothermal, If no process is mentioned,
it is assumed to be adiabatic.

b. A projectile travels in air of pressure 100'kPa at 10°C with a speed of 1500 km/hr. Compute
the Maéh niimber and Mach angle, Take y = 1.4 and R = 287:J/kg-K. (10 Marks)

Problem 15.9 A projectile ravels in air of pressure 10,1043 Niem® ar 10°C at a speed of 1500 km/hour.
Find the Mach number and the Mach angle. Take k = 1.4 and R = 287 J/kg"K.

Solution. Given :

Pressure, = 10.1043 Nfem® = 10.1043 % 10* Njem?
Temperature, t=10°C
T=10+ 273 = 283°K
»
Speed of projectile, V= 1500 km/hour = —Isgg ]E.([::]ﬂ m's = 416.67 mfs
e

k=14, k=287 Ifkg"K

For adiabatic process, the velocity of sound is given by

C = JKkRT =14 x 287 x 283 = 337.20 m/s

_V_41667

Mach number, =
C 337.20

= 1.235. Ans.



- Mach angle is obtained from equation (15.20) as

. 1 1
sin o = £:—:— = (L3097
VoM 1235
Mach angle, o = sin”' 0.8097 = 54.06°. Ans.
OR

(10 Marks)

— A mod m AT

10 a. Explain the necessity, applications and limitations ot'C]*'_l?_l._

Necessity of CFD (Computational Fluid Dynamics):
1. Cost-Effective Analysis: CFD enables cost-effective analysis and design improvements in
various fields without the need for physical prototypes.

2. Complex System Understanding: It helps in understanding and predicting the behavior of fluid
flow in complex systems like aerodynamics, weather patterns, combustion, HVAC systems, and
more.

3. Optimization and Design: CFD aids in optimizing designs, predicting performance, and
understanding the impact of changes in various scenarios, leading to efficient and effective
designs.

Applications of CFD:

1. Aerospace and Automotive Industry: Used for aircraft design, engine optimization,
aerodynamics, and vehicle design to improve efficiency and performance.

2. Environmental Studies: Assessing air and water pollution, weather patterns, and the impact of
various factors on the environment.

3. Civil and Architectural Engineering: Evaluating HVAC systems, wind patterns around
buildings, and other fluid-related aspects in construction and infrastructure.

Limitations of CFD:

1. Simplifications and Assumptions* Models are based on certain assumptions and
simplifications that might not capture all real-world complexities accurately.

2. Computational Resources: High computational requirements, especially for high-fidelity
simulations, can limit the application of CFD in some cases.

3. Validation and Accuracy: Results need to be validated with experimental data, and the
accuracy heavily depends on the quality of inputs, models, and simulations.



4. Complexity of Fluid Dynamics: Modeling turbulence, multiphase flows, and other complex
phenomena accurately remains a challenge.

Understanding the necessity, applications, and limitations of CFD is crucial for leveraging its
benefits effectively while being aware of its constraints for accurate and reliable simulations.

T Y e e T TR R o ah  a

b. A projectile travels with a.speed of 1500 km/'hr at 20°C temperature and 0.1 MPa air

pressure. Calculate the Mach number and Mach angle. Take v = 1.4,and R = 287 J/kg-K.
(10 Marks)

Problem 15.9 A projectile travels in air of pressure 10,1043 Niem® at 10°C at a speed of 1500 km/hour.
Find the Mach number and the Mach angle. Take k = 1.4 and R = 287 Jkg"K.

Solution. Given :

Pressure, p=10.1043 Nfem? = 10.1043 x 10* Nfem®
Temperature, t=10°C
T=10+ 273 = 283°K
*
Speed of projectile, V= 1500 km/hour = % mfs = 416.67 m/s
*

k=14, k=287 I/lkg"K
For adiabatic process, the velocity of sound is given by

C = JKRT = J14 x 287 x 283 = 337.20 m/s

1.235. Ans.

s V41667

Mach number,
C 337.20

- Mach angle is obtained from equation (15.20) as

sin {:r.:E: ! L = (.8097

V. M 1235
Mach angle, o = sin”' 0.8097 = 54.06°. Ans.



