

USN

VTU Final Exam – December 2023/Jan2024

Sub: OOPS WITH JAVA
Sub

Code

:

BCS306A
Branch

:
CSE

Date: 12/4/2024 Duration: 180 mins
Max

Marks:
100

Sem

/

Sec:

III(A, B & C) OBE

Answer any FIVE FULL Questions,choosing one full question from each module. MARKS CO RBT

Module -1

1 a) Discuss the different data types supported by java along with the default values

and literals.

Solution:

1. Primitive Data Types

Primitive data types are the most basic data types provided by Java. They are predefined

by the language and represent simple values. Java supports the following primitive data

types:

● boolean: Represents a true or false value.

○ Default Value: false

○ Literals: true, false

● byte: Represents an 8-bit signed integer.

○ Default Value: 0

○ Literals: Example: byte b = 10;

● short: Represents a 16-bit signed integer.

○ Default Value: 0

○ Literals: Example: short s = 1000;

● int: Represents a 32-bit signed integer.

○ Default Value: 0

○ Literals: Example: int i = 12345;

● long: Represents a 64-bit signed integer.

○ Default Value: 0L

○ Literals: Example: long l = 1234567890L; (suffix L or l)

● float: Represents a 32-bit floating point number.

○ Default Value: 0.0f

○ Literals: Example: float f = 3.14f; (suffix f or F)

● double: Represents a 64-bit floating point number.

○ Default Value: 0.0d

○ Literals: Example: double d = 3.14159; (suffix d or D, but not

required)

● char: Represents a single 16-bit Unicode character.

○ Default Value: '\u0000' (null character)

○ Literals: Example: char c = 'A';

2. Reference Types (Non-Primitive Data Types)

Reference types, also known as non-primitive data types, include:

[8] CO1 L2

 1 (b)
b) Develop a java program to convert celsius to Fahrenheit.

Solution:

import java.util.Scanner;

public class CelsiusToFahrenheit {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 // Prompt user to enter Celsius temperature

 System.out.print("Enter temperature in Celsius: ");

 double celsius = scanner.nextDouble();

 // Convert Celsius to Fahrenheit

 double fahrenheit = (celsius * 9/5) + 32;

 // Display the result

 System.out.println(celsius + " Celsius is equal to " + fahrenheit + "

Fahrenheit.");

 scanner.close();

 }

}

[6] CO2 L3

1(c) Justify the statement’ Compile once and run anywhere’ in java.

Solution:

"Compile once, run anywhere" epitomizes Java's architecture and design philosophy,

facilitating its platform independence. Java programs are compiled into bytecode, an

intermediate format understood by the JVM rather than specific to any operating system

or hardware. This bytecode can execute on any device or system with a compatible JVM,

ensuring consistency in behavior across diverse platforms. This approach streamlines

software development and deployment processes, as developers need not rewrite or

recompile code for different environments. This versatility has made Java a cornerstone in

enterprise applications, web development, and mobile applications, where reliability and

cross-platform compatibility are paramount.

Java's ability to execute on different platforms stems from its bytecode execution model.

Once compiled, Java applications can seamlessly run on Windows, macOS, Linux, and other

operating systems with minimal adaptation. This flexibility extends to embedded systems

and devices like smartphones, ensuring Java's relevance across a broad spectrum of

computing domains. By adhering to the "write once, run anywhere" principle, Java has

empowered developers to focus more on application logic and less on platform-specific

intricacies, thereby enhancing productivity and accelerating software deployment cycles in

today's interconnected world.

[6] CO1 L2

OR

2 (a) List the various operators supported by Java . Illustrate the working of >> and >>>

operator with an example.

Solution:

ava supports various types of operators, each serving different purposes in

programming. Here is a list of operators supported by Java:

1. Arithmetic Operators

● +: Addition

● -: Subtraction

● *: Multiplication

● /: Division

● %: Modulus (remainder)

2. Relational Operators

● ==: Equal to

● !=: Not equal to

● >: Greater than

● <: Less than

● >=: Greater than or equal to

● <=: Less than or equal to

3. Logical Operators

● &&: Logical AND

● ||: Logical OR

● !: Logical NOT

4. Bitwise Operators

● &: Bitwise AND

● |: Bitwise OR

● ^: Bitwise XOR (exclusive OR)

● ~: Bitwise NOT (complement)

● <<: Left shift

● >>: Signed right shift

● >>>: Unsigned right shift

Example of >> and >>> Operators:

>> Operator (Signed Right Shift)

The >> operator shifts the bits of a number to the right by a specified number of

positions. It preserves the sign bit (0 for positive numbers, 1 for negative numbers).

int num1 = 16; // Binary: 00000000 00000000 00000000 00010000

int result1 = num1 >> 2; // Right shift by 2 positions

// Resulting binary: 00000000 00000000 00000000 00000004

// Decimal result: 4

[8] CO1 L2

2(b)

Develop a java program to add two matrices using command line arguments.

Solution:

public class MatrixAddition {

 public static void main(String[] args) {

 // Check if two matrices are provided as command line arguments

 if (args.length != 9) {

 System.out.println("Please provide two 3x3 matrices as command line

arguments.");

 return;

 }

 // Parse the command line arguments into two 3x3 matrices

 int[][] matrix1 = parseMatrix(args, 0);

 int[][] matrix2 = parseMatrix(args, 9);

 // Check if parsing was successful

 if (matrix1 == null || matrix2 == null) {

 System.out.println("Invalid matrix format provided.");

 return;

 }

 // Add the matrices

 int[][] resultMatrix = addMatrices(matrix1, matrix2);

 // Display the result matrix

 System.out.println("Matrix 1:");

 printMatrix(matrix1);

 System.out.println("\nMatrix 2:");

 printMatrix(matrix2);

 System.out.println("\nResultant Matrix (Matrix1 + Matrix2):");

 printMatrix(resultMatrix);

 }

 // Method to parse a 3x3 matrix from command line arguments starting from a

given index

 private static int[][] parseMatrix(String[] args, int startIndex) {

 int[][] matrix = new int[3][3];

 try {

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 3; j++) {

 matrix[i][j] = Integer.parseInt(args[startIndex + i * 3 + j]);

 }

 }

 } catch (NumberFormatException | ArrayIndexOutOfBoundsException e) {

 return null; // Return null if parsing fails

 }

 return matrix;

 }

 // Method to add two 3x3 matrices

 private static int[][] addMatrices(int[][] matrix1, int[][] matrix2) {

 int[][] result = new int[3][3];

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 3; j++) {

 result[i][j] = matrix1[i][j] + matrix2[i][j];

 }

 }

[10] CO2 L3

2(c) Explain the syntax of declaration of 2D Arrays in Java.

Solution:

Syntax of Declaration:

// Syntax 1: Declare a 2D array variable

dataType[][] arrayName;

// Syntax 2: Declare and allocate memory for a 2D array

dataType[][] arrayName = new dataType[rows][columns];

// Syntax 3: Declare, allocate memory, and initialize elements of a 2D array

dataType[][] arrayName = { {val1, val2, ...}, {val3, val4, ...}, ... };

[2] CO1 L2

Module - 2

3(a). Examine java Garbage collection mechanism by classifying the 3 generations of java

heap.

Solution:

Java's garbage collection (GC) mechanism manages memory automatically by reclaiming

memory occupied by objects that are no longer referenced. The Java heap is divided into

three generations based on the age of objects and their likelihood of surviving GC cycles.

These generations are:

1. Young Generation

● Purpose: Newly created objects are allocated in the young generation.

● Characteristics:

○ Eden Space: Initially, all new objects are allocated in the Eden space.

○ Survivor Spaces (S0 and S1): Objects that survive one GC cycle in the

young generation are moved to one of the survivor spaces.

○ Minor GC: Collection of short-lived objects (young generation) is known as

minor GC.

● Objective: Most objects die young, so efficient collection of short-lived objects

minimizes the overhead of GC.

2. Old Generation (Tenured Generation)

● Purpose: Objects that survive multiple minor GC cycles are eventually promoted to

the old generation.

● Characteristics:

○ Tenured Space: Large and long-lived objects reside here.

○ Promotion: Objects that survive several minor GC cycles in the young

generation are promoted to the old generation.

○ Major GC: Collection of long-lived objects (old generation) is known as

major GC or full GC.

● Objective: Collection in the old generation is less frequent but involves more

objects and consumes more time.

3. Permanent Generation (Deprecated in Java 8 and removed in Java 9)

● Purpose: Stores metadata related to classes and methods.

● Characteristics:

○ Method Area: Previously included PermGen, it stored class metadata,

interned strings, and static final variables.

○ Removed: In Java 8, PermGen was removed and replaced with the

[6] CO1 L2

3(b) Develop a java program to find area of rectangle, area of circle and area of triangle

using method overloading concept , call these methods from main method with

suitable inputs.

Solution:

public class AreaCalculator {

 // Method to calculate area of a rectangle

 public static double calculateArea(double length, double width) {

 return length * width;

 }

 // Method to calculate area of a circle

 public static double calculateArea(double radius) {

 return Math.PI * radius * radius;

 }

 // Method to calculate area of a triangle

 public static double calculateArea(double base, double height) {

 return 0.5 * base * height;

 }

 public static void main(String[] args) {

 // Test the methods with sample inputs

 double length = 5.0;

 double width = 3.0;

 double radius = 4.0;

 double base = 6.0;

 double height = 8.0;

 // Calculate and display area of rectangle

 double areaRectangle = calculateArea(length, width);

 System.out.println("Area of Rectangle: " + areaRectangle);

 // Calculate and display area of circle

 double areaCircle = calculateArea(radius);

 System.out.println("Area of Circle: " + areaCircle);

 // Calculate and display area of triangle

 double areaTriangle = calculateArea(base, height);

 System.out.println("Area of Triangle: " + areaTriangle);

 }

}

[10] CO2 L3

3(c) Interpret the general form of a class with example.

Solution:

In Java, a class serves as a blueprint or template for creating objects. It encapsulates

data (fields) and behaviors (methods) that define the characteristics and operations of

objects instantiated from it. Here's an interpretation of the general form of a class in

Java, along with an example:

public class ClassName {

 // Fields (variables)

 dataType fieldName1;

 dataType fieldName2;

 // ...

 // Constructors

 ClassName(parameters) {

 // Initialization code

 }

 // Methods

 returnType methodName1(parameters) {

 // Method body

 }

 returnType methodName2(parameters) {

 // Method body

 }

 // Other class elements: more fields, constructors, methods, etc.

}

[4] CO2 L2

OR

4(a) Outline the following keywords with the example:

(i) this

(ii)static

Solution:

(i) this Keyword

In Java, this is a reference variable that refers to the current object. It can be used inside

any method or constructor to refer to the current instance of the class. Here's how this

is typically used:

public class Person {

 private String name;

 private int age;

 public Person(String name, int age) {

 this.name = name; // 'this' refers to the instance variable 'name'

 this.age = age; // 'this' refers to the instance variable 'age'

 }

 public void displayInfo() {

 System.out.println("Name: " + this.name); // 'this' used to access instance variable

'name'

 System.out.println("Age: " + this.age); // 'this' used to access instance variable 'age'

 }

}

(ii) static Keyword

In Java, static keyword is used to create fields, methods, and nested classes that belong

[6] CO2 L2

4(b) Develop a java program to create a class called Employee which contains

name,degignation, empid,basic salary as an instance variable and read() and write()

as methods . Using this class read and write five employee information from main()

method.

Solution:

import java.util.Scanner;

public class Employee {

 private String name;

 private String designation;

 private int empid;

 private double basicSalary;

 // Method to read employee information

 public void read() {

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter name: ");

 this.name = scanner.nextLine();

 System.out.print("Enter designation: ");

 this.designation = scanner.nextLine();

 System.out.print("Enter employee ID: ");

 this.empid = scanner.nextInt();

 System.out.print("Enter basic salary: ");

 this.basicSalary = scanner.nextDouble();

 }

 // Method to display employee information

 public void write() {

 System.out.println("Name: " + this.name);

 System.out.println("Designation: " + this.designation);

 System.out.println("Employee ID: " + this.empid);

 System.out.println("Basic Salary: " + this.basicSalary);

 System.out.println(); // Empty line for separation

 }

 public static void main(String[] args) {

 // Create an array to store multiple employees

 Employee[] employees = new Employee[5];

 // Read employee information using read() method

 for (int i = 0; i < employees.length; i++) {

 System.out.println("Enter details for Employee " + (i + 1) + ":");

 employees[i] = new Employee();

 employees[i].read();

 }

 // Display employee information using write() method

 System.out.println("Employee Information:");

 for (Employee emp : employees) {

 emp.write();

 }

 }

}

[10] CO2 L3

4(c) Interpret with an example , types of constructions.

Solution:

types of constructors in Java:

1. Default Constructor: Automatically provided by Java if no other constructors are

defined. Initializes object with default values.

2. Parameterized Constructor: Accepts parameters to initialize object with specific

values.

3. Constructor Overloading: Multiple constructors in a class with different parameter

lists, providing flexibility in object initialization.

4. Private Constructor: Prevents instantiation of a class by other classes. Often used

in utility classes.

5. Copy Constructor (emulated): Creates a new object as a copy of an existing object

of the same class. Achieved by defining a constructor that accepts an object of the

same class.

[4] CO2 L2

Module-3

5 (a) Illustrate the usage of super keyword in java with suitable examples. Also explain

dynamic method dispatch.

Solution:

In Java, the super keyword is used to refer to the superclass (parent class) of the current

object. It can be used to access superclass methods, constructors, and variables. Here are

the main uses of super:

1. Accessing Superclass Variables and Methods:

○ You can use super to access superclass variables and methods that are

hidden by the subclass.

2. Invoking Superclass Constructor:

● super() is used to invoke the superclass constructor. It must be the first

statement in the subclass constructor.

Dynamic Method Dispatch

Dynamic method dispatch is a mechanism in Java where the method to be executed is

determined at runtime rather than compile-time. It is also known as runtime

polymorphism or late binding. It allows a subclass to provide a specific implementation of

a method that is already provided by its superclass.

[10] CO3 L2

5 (b) Build a java program to create an interface Resizable with method resize(int radius)

that allow an object should be resized. Create a class circle that implements

resizable interface and implement the resize method.

Solution:

// Resizable interface

interface Resizable {

 void resize(int radius);

}

// Circle class implementing Resizable interface

class Circle implements Resizable {

 private int radius;

 // Constructor

 public Circle(int radius) {

 this.radius = radius;

 }

 // Method to resize the circle by setting a new radius

 @Override

 public void resize(int radius) {

 this.radius = radius;

 System.out.println("Circle resized to radius: " + radius);

 }

 // Getter method for radius

 public int getRadius() {

 return radius;

 }

}

// Main class to test Resizable interface and Circle class

public class Main {

 public static void main(String[] args) {

 // Create a Circle object

 Circle circle = new Circle(5);

 // Display original radius

 System.out.println("Original Circle Radius: " + circle.getRadius());

 // Resize the circle

 circle.resize(10);

 // Display resized radius

 System.out.println("Resized Circle Radius: " + circle.getRadius());

 }

}

[10] CO3 L3

OR

6(a) Compare and contrast method overloading and method overriding with suitable

examples.

Solution:

Method Overloading allows a class to have multiple methods with the same name

but different parameter lists. This is achieved by changing the number or types of

parameters. Java determines which method to call based on the number and types of

arguments passed at compile-time. For example, a class can have multiple add

methods that accept different numbers or types of parameters, providing flexibility

in method usage without needing different method names.

Method Overriding, on the other hand, occurs in a subclass that provides a specific

implementation of a method that is already defined in its superclass. The overriding

method must have the same name, parameter list, and return type as the method in

the superclass. This allows a subclass to provide its own implementation of inherited

methods, promoting code customization and enabling polymorphic behavior.

Method overriding is resolved dynamically at runtime based on the actual object

type, facilitating runtime polymorphism and supporting the "is-a" relationship in

object-oriented programming.

[8] CO2 L2

6(b) Define Inheritance and list the different types of inheritance in java.
Solution:

Inheritance in Java is a mechanism by which one class (subclass or derived class)

acquires the properties (fields and methods) and behaviors of another class

(superclass or base class). It promotes code reusability and allows the creation of

hierarchical relationships between classes. Inheritance enables a subclass to extend

and specialize the functionality of its superclass, thereby supporting the "is-a"

relationship

Types of Inheritance in Java:

1. Single Inheritance:

○ In single inheritance, a subclass inherits from only one superclass.

Java supports single inheritance where a class can extend only one

other class.

2. Multilevel Inheritance:

● Multilevel inheritance involves a chain of inheritance where one class

extends another subclass. This creates a hierarchical relationship.

3. Hierarchical Inheritance:

● Hierarchical inheritance involves one superclass being extended by multiple

subclasses. Each subclass inherits from the same superclass.

4. Multiple Inheritance (through Interfaces):

● Java does not support multiple inheritance of classes (i.e., a class cannot

directly extend more than one class). However, it supports multiple

inheritance through interfaces, where a class can implement multiple

interfaces.

5. Hybrid Inheritance:

● Hybrid inheritance is a combination of multiple types of inheritance. It

typically involves multiple inheritance (through interfaces) and single or

multilevel inheritance.

[4] CO3 L2

6(c)
Build a java program to create a class named Shape , Create 3 subclasses namely

circle, triangle and square. each class has 2 methods named draw() and erase().

Demonstrate polymorphism concepts by developing suitable methods and main

program.

Solution:

// Shape superclass

class Shape {

 // Draw method (to be overridden)

 void draw() {

 System.out.println("Drawing Shape");

 }

 // Erase method (to be overridden)

 void erase() {

 System.out.println("Erasing Shape");

 }

}

// Circle subclass

class Circle extends Shape {

 // Override draw method for Circle

 @Override

 void draw() {

 System.out.println("Drawing Circle");

 }

 // Override erase method for Circle

 @Override

 void erase() {

 System.out.println("Erasing Circle");

 }

}

[8] CO3 L3

Module - 4

7 (a)
Examine the various levels of access protections available for packages and their

implications with suitable examples.

Solution:

In Java, there are four levels of access protection for classes, methods, and variables:

public, protected, default (package-private), and private. Here's a brief

overview with examples:

1. Public

Access: Accessible from any other class. Implications: Least restrictive, suitable for

API methods or constants. Example:

public class PublicExample {

 public int value = 10;

}

public class TestPublic {

 public static void main(String[] args) {

 PublicExample example = new PublicExample();

 System.out.println(example.value); // Accessible from any class

 }

}

2. Protected

Access: Accessible within the same package and subclasses. Implications: More

restricted, useful for inheritance while maintaining some encapsulation. Example:

public class ProtectedExample {

 protected int value = 10;

}

class SubclassExample extends ProtectedExample {

 public void show() {

 System.out.println(value); // Accessible in subclass

 }

}

3. Default (Package-Private)

Access: Accessible only within the same package. Implications: Package-level

encapsulation, not accessible from outside the package. Example:

10 CO4 L2

7(b)
Build a java program for a Banking application to throw an exception , where the

person tries to withdraw the amount even though he/she has lesser than minimum

balance (Create a custom exception).

Solution:

Step-by-Step Breakdown:

1. Define a Custom Exception: Create a custom exception class

InsufficientFundsException.

2. BankAccount Class: Define the bank account with methods for deposit and

withdraw.

3. Main Class: Use the BankAccount class and handle the custom

exception.

Custom Exception

class InsufficientFundsException extends Exception {

 public InsufficientFundsException(String message) {

 super(message);

 }

}

BankAccount Class

class BankAccount {

 private double balance;

 private static final double MINIMUM_BALANCE = 100.0;

 public BankAccount(double initialBalance) {

 if (initialBalance >= MINIMUM_BALANCE) {

 this.balance = initialBalance;

 } else {

 this.balance = MINIMUM_BALANCE;

 }

 }

 public void deposit(double amount) {

 if (amount > 0) {

 balance += amount;

10 CO4 L3

OR

8(a)
Define Exception. Explain exception handling mechanism provided in java along

with syntax and examples.

Solution:

An exception is an event that disrupts the normal flow of a program's execution. In

Java, exceptions are objects that represent these errors and can be caught and

handled to maintain the program's normal flow.

Exception Handling Mechanism

Java provides several mechanisms to handle exceptions:

1. try: Block of code that might throw an exception.

2. catch: Block of code that handles the exception.

3. finally: Block of code that executes regardless of whether an exception was

caught or not.

4. throw: Used to explicitly throw an exception.

5. throws: Indicates that a method can throw one or more exceptions.

Syntax

try-catch-finally:

try {

 // Code that might throw an exception

} catch (ExceptionType1 e1) {

 // Handle exception of type ExceptionType1

} catch (ExceptionType2 e2) {

 // Handle exception of type ExceptionType2

} finally {

 // Code to be executed regardless of an exception

}

throw:

if (condition) {

 throw new ExceptionType("Error message");

}

throws:

public void methodName() throws ExceptionType {

 // Method code

}

10 CO4 L2

8(b)
Build a java program to create a package ‘Balance’ containing Account class with

displayBalance() method and import this p-ackage in another program to access the

method of Account class.

Solution:

Step 1: Create the Balance Package

First, you need to create a directory named Balance and then create the Account

class inside this directory.

Balance/Account.java

package Balance;

public class Account {

 private double balance;

 public Account(double balance) {

 this.balance = balance;

 }

 public void displayBalance() {

 System.out.println("Current balance: $" + balance);

 }

}

Step 2: Import and Use the Balance Package in Another Program

Next, you need to create another Java program that imports the Balance package

and uses the Account class.

MainProgram.java

import Balance.Account;

public class MainProgram {

 public static void main(String[] args) {

 Account myAccount = new Account(1500.00);

 myAccount.displayBalance();

 }

10 CO4 L3

Module -5

9(a)
Define a thread. Also discuss the different ways of creating a Thread.

Solution:

Thread in Java

Definition: A thread is a lightweight subprocess, the smallest unit of processing. It

is a separate path of execution within a program, allowing concurrent execution of

tasks. Threads are used to perform multiple tasks simultaneously within a single

program.

Different Ways of Creating a Thread in Java

Java provides two main ways to create a thread:

1. By Extending the Thread Class

2. By Implementing the Runnable Interface

1. By Extending the Thread Class

When you extend the Thread class, you create a new class that inherits from

Thread and override its run() method. The run() method is where you define

the code that constitutes the new thread's task.

Example:

class MyThread extends Thread {

 public void run() {

 for (int i = 0; i < 5; i++) {

 System.out.println(Thread.currentThread().getId() + " - Value: " + i);

 try {

 Thread.sleep(500); // Pause for 500 milliseconds

 } catch (InterruptedException e) {

 System.out.println(e);

 }

 }

 }

}

public class ThreadExample1 {

 public static void main(String[] args) {

 MyThread t1 = new MyThread();

 MyThread t2 = new MyThread();

6 CO5 L2

9(b)
How synchronization can be achieved between thread in java? Explain with an

example.

Solution:

Synchronization in Java is a mechanism to control the access of multiple threads to

shared resources. It helps to prevent thread interference and consistency problems,

ensuring that only one thread can access the resource at a time.

Ways to Achieve Synchronization

1. Synchronized Method

2. Synchronized Block

3. Static Synchronization

1. Synchronized Method

A synchronized method ensures that only one thread can execute it at a time for the

same object.

Example:

class Table {

 synchronized void printTable(int n) { // synchronized method

 for (int i = 1; i <= 5; i++) {

 System.out.println(n * i);

 try {

 Thread.sleep(400);

 } catch (InterruptedException e) {

 System.out.println(e);

 }

 }

 }

}

class MyThread1 extends Thread {

 Table t;

 MyThread1(Table t) {

 this.t = t;

 }

6 CO5 L2

9(c)
Develop a java program for automatic conversion of Wrapper class type into

corresponding primitive type that demonstrates unboxing.

Solution:

public class UnboxingExample {

 public static void main(String[] args) {

 // Example of unboxing

 Integer wrappedInt = new Integer(50); // Creating an Integer wrapper object

 int primitiveInt = wrappedInt; // Unboxing: converting Integer to int

 System.out.println("Wrapped Integer: " + wrappedInt);

 System.out.println("Unboxed Primitive Integer: " + primitiveInt);

 // Another example with Double

 Double wrappedDouble = 25.5; // Autoboxing: double to Double

 double primitiveDouble = wrappedDouble; // Unboxing: Double to double

 System.out.println("\nWrapped Double: " + wrappedDouble);

 System.out.println("Unboxed Primitive Double: " + primitiveDouble);

 }

}

8 CO5 L3

OR

10(a)
Summarize the type Wrapper supported in Java.

Solution:

In Java, wrapper classes are used to encapsulate primitive data types into objects.

They provide a way to treat primitive data types as objects. Here's a summary of the

wrapper classes supported in Java:

1. Integer Types:

○ Byte: Represents a byte value.

○ Short: Represents a short value.

○ Integer: Represents an int value.

○ Long: Represents a long value.

2. Floating-Point Types:

○ Float: Represents a float value.

○ Double: Represents a double value.

3. Boolean Type:

○ Boolean: Represents a boolean value (true or false).

4. Character Type:

○ Character: Represents a char value.

Example:

// Example of using Integer wrapper class

Integer num1 = new Integer(10); // Explicit creation

Integer num2 = 20; // Autoboxing

int sum = num1 + num2; // Unboxing implicitly

System.out.println("Sum: " + sum);

// Example of using Boolean wrapper class

Boolean flag1 = new Boolean(true); // Explicit creation

Boolean flag2 = false; // Autoboxing

if (flag1.equals(flag2)) {

 System.out.println("Flags are equal.");

} else {

 System.out.println("Flags are not equal.");

}

6 CO5 L2

10(b)
Explain Autoboxing/Unboxing that occurs in expressions and operators.

Solution:

Autoboxing and unboxing in Java are automatic conversions performed by the Java

compiler to seamlessly convert between primitive types and their corresponding

wrapper classes (objects) when necessary. This feature was introduced to simplify

coding and make it more intuitive when working with primitive types and their

object representations.

Autoboxing

Autoboxing is the automatic conversion of a primitive type to its corresponding

wrapper class object. This conversion happens when:

● Assigning a primitive value to a wrapper class reference.

● Passing a primitive value as a parameter to a method that expects the

corresponding wrapper class object.

● Using a primitive value in expressions that require a wrapper class object.

Example of Autoboxing:

// Assigning primitive value to wrapper class reference

Integer num1 = 10; // Autoboxing: int to Integer

// Passing primitive value to a method expecting Integer

void processInteger(Integer number) {

 // Method implementation

}

processInteger(20); // Autoboxing: int to Integer

// Using primitive value in an expression requiring Integer

List<Integer> numbers = new ArrayList<>();

numbers.add(30); // Autoboxing: int to Integer

Unboxing

Unboxing is the automatic conversion of a wrapper class object to its corresponding

primitive type. This conversion happens when:

● Assigning a wrapper class object to a primitive type variable.

● Passing a wrapper class object as a parameter to a method that expects the

corresponding primitive type.

● Using a wrapper class object in expressions that require a primitive type.

Example of Unboxing:

6 CO5 L2

10(c)
Develop a java program to create a class myThread. Call the base class constructor

in this class’s constructor using super and start the thread . The run method of the

class starts after this . It can be observed that both the main thread and created child

thread are executed concurrently.

Solution:

// MyThread.java

class MyThread extends Thread {

 MyThread(String name) {

 super(name); // Calling superclass Thread's constructor

 start(); // Start the thread

 }

 public void run() {

 // Define the behavior of the thread here

 for (int i = 1; i <= 5; i++) {

 System.out.println("Child Thread: " + getName() + " - Count: " + i);

 try {

 Thread.sleep(1000); // Pause for 1 second

 } catch (InterruptedException e) {

 System.out.println(e);

 }

 }

 System.out.println("Child Thread " + getName() + " exiting.");

 }

}

// MainThread.java

public class MainThread {

 public static void main(String[] args) {

 MyThread thread1 = new MyThread("Thread 1");

 // Main thread continues to execute concurrently

8 CO5 L3

