
Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Module 1

Q1a. Define the following terms: i) String: A string is a finite sequence of
symbols taken from a given alphabet. For example, if the alphabet is {a, b}, a
possible string is "aab".

ii) Language: A language is a set of strings formed from an alphabet. For example,
the set of all strings over the alphabet {a, b} is a language.

iii) Alphabet: An alphabet is a non-empty finite set of symbols. For example, {a,
b} is an alphabet, where ‘a’ and ‘b’ are the symbols.

iv) Length of a string: The length of a string is the number of symbols in the
string. For example, the length of the string "aab" is 3.

Q1b. Explain the various phases of a compiler with a neat diagram.

A compiler translates a high-level language program into machine language. It has
several phases:

1. Lexical Analysis: The input program is converted into tokens by removing
whitespace and comments. Each token represents a basic element, such as an
identifier or keyword.

○ Output: Sequence of tokens.
2. Syntax Analysis: The tokens are analyzed according to the grammar rules of

the language to generate a parse tree.
○ Output: Parse tree or abstract syntax tree (AST).

3. Semantic Analysis: This phase checks for semantic consistency, ensuring
that operations are valid (e.g., type checking).

○ Output: Annotated syntax tree with types and other semantic
information.

4. Intermediate Code Generation: An intermediate representation (IR) of the
source code is generated. This is independent of the target machine.

○ Output: Intermediate code (e.g., three-address code).

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

5. Code Optimization: The intermediate code is optimized to improve the
performance by reducing redundant calculations, loop optimizations, etc.

○ Output: Optimized intermediate code.
6. Code Generation: The final machine code or assembly code is generated

for the target architecture.
○ Output: Machine code or assembly code.

7. Code Linking and Loading: The generated code is linked with libraries and
other object files to create the final executable file.

○ Output: Executable code.

Q1c. Define DFA and design a DFA to accept the following language:

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

● DFA (Deterministic Finite Automaton): A DFA is a state machine that
accepts or rejects strings of a language. It consists of:

○ A finite set of states.
○ A set of input symbols (alphabet).
○ A transition function.
○ An initial state.
○ A set of final states.

i) To accept strings having an even number of a’s and an odd number of b’s:

● States:
○ q0q_0q0​: Even number of a's and even number of b's.
○ q1q_1q1​: Even number of a's and odd number of b's.
○ q2q_2q2​: Odd number of a's and even number of b's.
○ q3q_3q3​: Odd number of a's and odd number of b's.

Transitions:

● From q0q_0q0​, an 'a' takes the automaton to q2q_2q2​, a 'b' takes it to
q1q_1q1​.

● From q1q_1q1​, an 'a' takes it to q3q_3q3​, a 'b' takes it to q0q_0q0​.
● From q2q_2q2​, an 'a' takes it to q0q_0q0​, a 'b' takes it to q3q_3q3​.
● From q3q_3q3​, an 'a' takes it to q1q_1q1​, a 'b' takes it to q2q_2q2​.

The accepting state is q1q_1q1​(even a's, odd b's).

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

ii) To accept strings of a’s and b’s not having the substring "aab":

We need to build a DFA that rejects any string containing "aab" and accepts all
others.

● States:
○ q0q_0q0​: No 'aab' seen.
○ q1q_1q1​: One 'a' seen.
○ q2q_2q2​: Two 'a's seen.
○ q3q_3q3​: "aab" seen (trap state).

Transitions:

● From q0q_0q0​, an 'a' takes the automaton to q1q_1q1​, a 'b' keeps it in
q0q_0q0​.

● From q1q_1q1​, an 'a' takes it to q2q_2q2​, a 'b' takes it back to q0q_0q0​.
● From q2q_2q2​, an 'a' keeps it in q2q_2q2​, a 'b' takes it to the trap state

q3q_3q3​.

The accepting states are q0q_0q0​, q1q_1q1​, and q2q_2q2​, while q3q_3q3​ is the
rejecting state.

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q2a. Design the equivalent DFA to the following ε-NFA.

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q2b. Minimize the following DFA by identifying distinguishable and
non-distinguishable states.

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q2c. With neat diagram explain the components of the language processing
system in detail.

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

(05 Marks)

Components of a Language Processing System:

1. Lexical Analyzer (Scanner): Converts the input program into tokens
(identifiers, keywords, symbols) by scanning the source code.

2. Syntax Analyzer (Parser): Analyzes the token sequence to ensure that it
adheres to the grammar rules of the language. The output is usually a parse
tree.

3. Semantic Analyzer: Checks the program for semantic errors, such as type
checking and scope resolution, ensuring that the program has meaningful
operations.

4. Intermediate Code Generator: Generates an intermediate representation of
the source code, which is typically easier to optimize than the raw source
code.

5. Code Optimizer: Improves the intermediate code by eliminating
inefficiencies (e.g., removing redundant calculations).

6. Code Generator: Produces the target code (assembly or machine code)
from the optimized intermediate code.

7. Symbol Table: Stores information about variables, functions, objects, etc.,
used throughout the compilation process.

8. Error Handler: Detects and handles errors at various stages (lexical, syntax,
semantic, etc.).

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

9.

Module 2

Q3a. Define Regular Expressions. Write regular expressions for the following:

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q3b. Convert the following automata to a regular expression.

For the given automaton with states q1q_1q1​, q2q_2q2​, and q3q_3q3​, and
transitions between them labeled with 'a' and 'b', the regular expression for the
entire automaton can be derived using state elimination or direct translation.

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q3c. Explain the concept of input buffering in the Lexical Analysis along with
sentinels.

Input Buffering in Lexical Analysis:

● Lexical analyzers often need to handle large input files efficiently. Instead
of reading the input one character at a time, input buffering is used to speed
up the process.

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

● Double Buffering: The input is divided into two buffers. When one buffer is
exhausted, the second buffer is loaded, and the first is refilled in the
background.

Sentinels:

● Sentinels are special characters placed at the end of the buffer to signal the
end of the input. The sentinel allows the lexical analyzer to avoid
continuously checking if it has reached the end of the buffer, improving
performance.

Q4a. State and prove Pumping Lemma for regular languages and also prove
the language L={anbn∣n≥0}L = \{ a^n b^n | n \geq 0 \}L={anbn∣n≥0} is not
regular.

(10 Marks)

Pumping Lemma for Regular Languages: The pumping lemma is a property of
all regular languages. It states that for any regular language LLL, there exists a
number ppp (pumping length) such that any string sss in the language LLL with
length ∣s∣≥p|s| \geq p∣s∣≥p can be divided into three parts, s=xyzs = xyzs=xyz,
where:

1. ∣xy∣≤p|xy| \leq p∣xy∣≤p,
2. ∣y∣>0|y| > 0∣y∣>0,
3. xykz∈Lxy^kz \in Lxykz∈L for all k≥0k \geq 0k≥0 (i.e., repeating or

removing yyy should still result in a valid string in LLL).

To prove L={anbn∣n≥0}L = \{ a^n b^n | n \geq 0 \}L={anbn∣n≥0} is not regular,
we assume the language is regular and apply the pumping lemma. For a string
s=apbps = a^p b^ps=apbp, after dividing s=xyzs = xyzs=xyz, and pumping yyy, we
will either add or remove a's or b's, breaking the form anbna^n b^nanbn, thus
contradicting the lemma. Hence, LLL is not regular.

Q4b. Construct ε-NFA for the following regular expression: (0+11)0*1(04
Marks)

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

An ε-NFA (epsilon-NFA) can be constructed for the regular expression (0+1)0∗1(0
+ 1) 0^* 1(0+1)0∗1 by following these steps:

1. Start by creating transitions for the expression 0+10 + 10+1, which will have
two branches.

2. From the end of each branch, connect an ε-transition to a state that handles
0∗0^*0∗ (zero or more occurrences of 0).

3. Finally, add a transition for the trailing 1.

Q4c. Define Token, Lexeme, and Pattern with an example.

(06 Marks)

● Token: A token is a category of lexemes. It represents a syntactic unit in the
source code such as keywords, operators, or identifiers. For example, in int x
= 10;, int is a token.

● Lexeme: A lexeme is the actual string of characters in the source program
that matches a pattern and forms a token. For example, x in int x = 10; is a
lexeme for the identifier token.

● Pattern: A pattern is a rule or a set of rules that defines how the lexemes for
a particular token are structured. For example, a pattern for an identifier
could be [a-zA-Z_][a-zA-Z_0-9]*, which defines how variable names are
structured.

Q5a. Define CFG. Write a CFG for the following languages:

i) All strings over {a, b} that are even and odd palindromes.
A palindrome is a string that reads the same forward and backward. For even and
odd palindromes over the alphabet {a, b}, the CFG can be written as:

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q5b. Define ambiguity. Consider the grammar E→E+E∣E∗E∣(E)∣idE
\rightarrow E + E | E * E | (E) | idE→E+E∣E∗E∣(E)∣id. Construct the
leftmost and rightmost derivation, parse tree for the string "id + id * id".
Also, show that the grammar is ambiguous.

● Ambiguity: A grammar is ambiguous if there exists a string that can be
generated by the grammar in more than one way (i.e., it has more than one
parse tree or derivation).

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q6a. Consider the CFG given below with the production set, compute the
following for the same:

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q6b. Write an algorithm to eliminate left recursion from a grammar. Also,
eliminate left recursion from the grammar:

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q7a. Define PDA. Design PDA for the language L={WCWR∣W∈{a,b}}L = \{
WCW^R | W \in \{a, b\} \}L={WCWR∣W∈{a,b}} and also show the
Instantaneous Description (ID) for the input aabCbaa.

(10 Marks)

● PDA (Pushdown Automaton): A PDA is an automaton that uses a stack to
handle context-free languages. It has states, transitions, an input tape, and a
stack.

Designing a PDA for L={WCWR}L = \{ WCW^R \}L={WCWR}:

● W is any string of a's and b's, and W^R is its reverse.
● The PDA will push all symbols before C onto the stack and then, after C, it

will pop symbols from the stack and match them with the reverse of the
input string.

Instantaneous Description (ID) for input "aabCbaa":

● Step through the input, pushing "aab" onto the stack before encountering C.
● After C, start popping symbols from the stack and matching them with the

remaining input "baa". The stack will empty, confirming the s

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

tring belongs to the language.

Q7b. Construct LR(0) automata for the grammar given below:

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

(10 Marks)

LR(0) Automaton:

● LR(0) parsing uses a finite automaton to recognize valid prefixes of a
rightmost derivation. You need to construct the states and transitions based
on the production rules and item sets.

● This involves computing the closure of each item and the goto function for
shifts and reductions.

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q8a. Define shift-reduce parser and handle. Also list and explain the different
actions available in Bottom-up parsers.

(10 Marks)

● Shift-Reduce Parser: A shift-reduce parser is a type of bottom-up parser
that works by shifting symbols onto a stack and then reducing them into
non-terminals according to the grammar rules.

● Handle: A handle is the substring that matches the right-hand side of a
production and can be replaced by the corresponding left-hand side during
the reduce step.

● Actions in Bottom-up Parsing:
○ Shift: Move the next input symbol onto the stack.
○ Reduce: Replace a string of symbols on the stack with a non-terminal

based on a grammar rule.
○ Accept: Successfully parse the input string.
○ Error: An error occurs when no valid shift or reduce action can be

applied.

Q8b. Construct the LR(1) automata for the given grammar:

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

(10 Marks)

LR(1) Automaton:

● LR(1) uses lookahead symbols to make parsing decisions. Construct the
automaton by computing item sets with lookaheads and defining the
transitions based on the grammar rules and lookahead symbols.

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q9b. Write a short note on the following:

i) Post correspondence problem
The Post correspondence problem (PCP) is an undecidable problem in computer
science. It involves determining whether a given set of pairs of strings (over some

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

alphabet) has a sequence such that, when concatenated, the two resulting strings
are identical. The problem is known to be undecidable, meaning no algorithm can
be constructed that always provides a correct yes-or-no answer for every instance
of the problem.

ii) Design issues in code generation
In code generation, several issues need to be addressed to produce efficient
machine code:

● Target Machine Dependence: The generated code must be suitable for the
architecture of the target machine.

● Efficiency: The generated code should make optimal use of resources, such
as registers and memory.

● Instruction Selection: The choice of instructions should minimize
execution time.

● Register Allocation: Efficient use of registers is critical to reducing memory
access times.

● Optimization: Optimizations, like dead code elimination and loop unrolling,
improve the performance of the generated code.

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

Q10b. Write a short note on:

Re
nc
ita
_A
TC
D_
so
lut
ion
_D
EC
/JA
N2
02
4

i) Decidable language
A decidable language is a formal language for which there exists a Turing
machine that can decide whether any given string belongs to the language or not.
In other words, the Turing machine halts with a definitive yes-or-no answer for
every input. Examples of decidable languages include regular languages and
context-free languages.

ii) Halting problem in Turing machines
The halting problem is a decision problem that asks whether a given Turing
machine will halt on a given input or continue running forever. Alan Turing proved
that this problem is undecidable—there is no algorithm that can determine whether
any arbitrary Turing machine will halt or not for every possible input.

