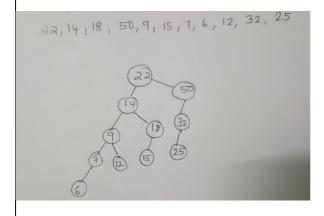
USN					


Sub:	ATA STRUO PPLICATIO	CTURES AN ONS	ND .		Sub Code:	BCS304
Date:	Duration:	90 minutes	Max Marks:	50	Sem/Sec:	

Scheme and Solutions

Construct a binary search tree for the inputs 22, 14, 18, 50, 9, 15, 7, 6, 12, 32, 25 also write a function in C to search an item in the BST.

Answer:

Construction of BST-3M(step wise)

Search an item in the BST-3M

Shoul node & search (Struct node & not, whiley

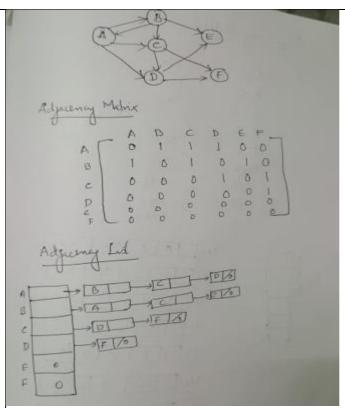
If (node == NULL)

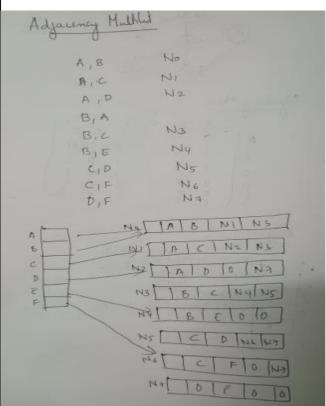
rehum not;

else if (leg == nod = date)

search (nod => left, key)

else if (leg > nod => date)


Search (nod => left, key)


1

Search (nod => noght, key)

		Explain winner tree and looser tree with suitable examples.						
		Answer:						
	b	Winner Tree Explanation with example-2M						
		Looser Tree Explanation with example-2M						
		Construct a binary tree by using the following in-order and pre-order traversal.						
		In-order: BCAEDGHFI						
		Pre-order: ABCDEFGHI						
		Also perform the post order traversal of the tree.						
		Answer:						
		Construction of Binary Tree-3M						
	a	B C E F						
		Postorder-1M CBEHGIFDA Demonstrate the tree date and error representation for the division cate						
		Demonstrate the tree, data, and array representation for the disjoint sets,						
		S1= {1,2,5,7}						
2		S2= {8,9,3}. Also write algorithm for simple union () and simple find().						
		Answer:						
		of tree, data,Representation array -1M,2M,1M						
	b	$S1 = \{1, 2, 5, 7\}$ $S2 = \{8, 9, 3\}$ $S1$ $S1$ $S2$ $S3$ $S2$ $S3$ $S4$ $S2$ $S3$ $S4$ $S4$ $S4$ $S4$ $S4$ $S4$ $S4$ $S4$						

		simple union()- 1M
		Void Sumple Union (mt i, mt) E Parent Ci) = j; 3
		simple find()- 1M
		fuid (c) E while (PLJZO) (i = PLJ; 3.
3	a	Define Graph. For the given graph, show all the three representations of the graph. Answer: Representation of graph
		Adjacency Matrix 1M
		Adjacency List 2M
		Adjacency Multilist 2M

What are the methods used for traversing a graph? Explain any one with example and write C function for the same.

Answer:

b

Methods for Traversing -- 1M

DFS (Depth First Search) BFS (Breadth First Search)

Algorithm for DFS or BFS 2M

Algorithm DFS (VertexV);

Visited (V) = 1

for all vertex no adjacet of to V:

id (visited (w) == 0)

DFS (W);

Algorithm BFS (V)

A BFS of G(VIE) in comiced out
beginning at virtue V and array virtual
of n inhally set to false

Visited [V] = true,

unitable queue (Q);

add (QiV);

belie Enot emply queue (Q) do

V=delete (QiV);

for all virtue (W) adjustable

if not walled (W) then

{
add (QiV);

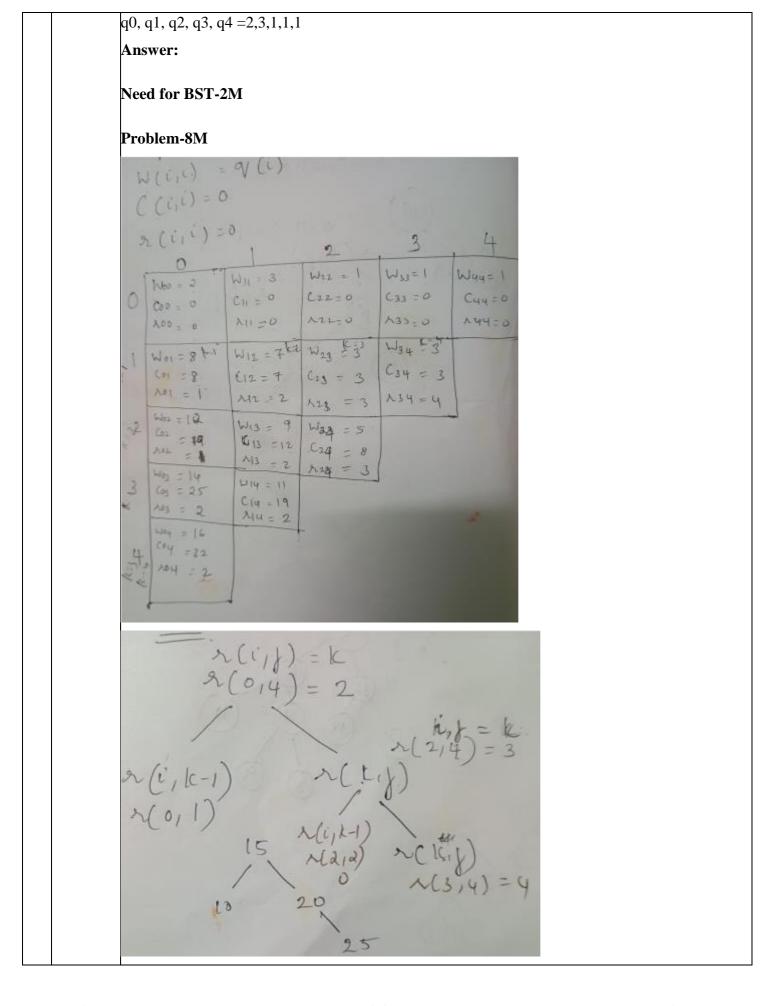
visited (W) = true,

3
}

Example 2M

Given a hash table with 9 slots. The hash function is $h(k)=k \mod 9$.

The collision is overcome by chaining. The following keys are inserted in the order.


5,28,19,15,20,33,12,17,10. Develop the corresponding hash table.

Answer:

4

a

		A(1) = kmod 9 5, 28, 19, 15, 20,33, 12, 17, 10 5 mod 9 = 1 19 mod 9 = 1 15 mod 9 = 6 20 mod 9 = 2 33 mod 9 = G 12 mod 9 = 3 17 mod 9 = 1
_	b	Explain the following by taking suitable examples, a) Linear Probing b) Quadratic Probing c) Folding Method Answer: Linear Probing technique with example-2M Quadratic Probing technique with example-2M
		Folding technique with example- 2M Explain dynamic hashing using directories with the help of an example. Answer:
5	a	Dynamic hashing using Directories 2M -Importance of directory and buckets -Increasing depth of the directory. Example 3M Differentiate between height biased and weight biased leftist tree with examples.
	b	Answer: Height biased leftist tree 2.5M Weight biased leftist tree 2.5M
6	a	What is the need for an optimal BST. Find the optimal BST for n=4, Keys are 10,15,20, 25.

