USN					

CMRIT

CMR INSTITUTE OF TECHNOLOGY

Internal Assessment Test 2 – Jan 2024

S	ub:	Digital Des	ign and Co	mputer Organiz	ation		Sub Code:	BCS302	Branch:		AIML
Ι	Date	: 18/1/2024	Duration :	90 minutes	Max Marks:	50	Semester	II	I		OBE
				Answer any FI	VE Questions	•			MARK S	C O	RBT
1		Design a full add simplification &	•	ructing the truth tandule)	ble and simplify	the ou	tput equations	s.(K-Map	[10]	2	L3
2		Explain the JK Fl	ip Flop wit	h logic diagram, f	unction table, ar	nd equa	tion		[10]	2	L3
3	What is Encoder? Write the compressed truth table for a 4 to 2 line priority encoder with a valid output where the highest priority is given to the highest bit position and simplify the same using K-map. Design the logic circuit as well. What is a Demultiplexer? Design 1:16 Demultiplexer using two 1:8 Demuxes and One 1:2								[5]	2	L3
	IК	Demuxes.	ipiexei / De	esign 1.10 Demun	ipiexei using tw	0 1.0 1	Demuxes and C	Jue 1.2	[5]		
1	A With logic diagram and truth table explain the operation of a SR latch								[5]	3	L2
-	В	Explain the role of system software in a computing system.								3	L2
5	Α	A Explain the single-bus structure with a neat diagram.							[5]	3	L2
	В	Explain Operation	nal Concep	t of a computer w	ith a diagram.				[5]	3	L2
6	A	What is the differ	ence betwe	en Multiplexer an instruction types	d Demultiplexer	r?			[5]	3	L2
0	В	Explain the RISC	and CISC	instruction types	with examples.		•	•	[5]	3	L2

CI CCI HOD

Internal Assessment Test 2 – Jan 2024

Scheme of Valuation

Sub:		Digital Design and Computer Organization						Sub Code:	/BAD302				IL/AINI /CS(AII	
Date	e:	19/12/2023 Duration: 90 minutes Max Marks: 50						Sem	III				Ol	
	Answer any FIVE Questions											MARKS		
		Design a full ac simplification a	& Verilog Mo	fy the o	output equation	ns.(K-Map								
		Α	nputs B	C _{in} Su	Out	Carry								
1		0	0		0	0					F1.03			
1		0	0		1	0					[10]		1	
		0	1	0 1	1	0								
		0	1	1 (0	1								
		1	0	0 1	1	0								
		1	0		0	1								
		1 1	1		1	1								
		Circuit diagran Truth Table and Verilog Code (d K-Map											
	Ì	Explain the JK	Flip Flop wit	h logic diagr	ram, fu	inction table,								
	á	and equation					J	7		⊢ Q				
	Circuit Diagram CLK													
2	ļ	Truth Table									[1	[0]	1	
		Toggle Condition												
3	a	What is Encoder? Write the compressed truth table for a 4 to 2 line priority encoder with a valid output where the highest priority is given to the highest bit position and simplify the same using K-map. Design the logic circuit as well. Encoder Circuit, Truth Table and K-Map for outputs. Expiation for priority assigned to LSB and MSB									[5]	2	

1				
	b	What is a Demultiplexer? Design 1:16 Demultiplexer using two 1:8 Demuxes and One 1:2 Demuxes. Circuit Diagram, and connectivity should be shown correctly. Truth table not expected.	5	2
4	a	With logic diagram and truth table explain the operation of a SR latch Either a NOR latch or NAND latch circuit is expected. Truth table when inputs are 0, 0 and 1.1 has to be explained in detail. Memory and Not used conditions.	[5]	3
		Explain the role of system software in a computing system. Definition, Their Role and few examples like OS, compiler, Assembler, Linker and Loader Expected.	[5]	3
5	a	Explain the single-bus structure with a neat diagram.	[5]	3
	b	Explain Operational Concept of a computer with a diagram. CPU Control Unit Arithmetic And Logical Unit Memory Unit Block Diagram of a Computer ArtofTesting	[5]	3

i	Parameters	Multiplexer	Demultiplexer	
	Definition	Multiplexer refers to a type of combinational circuit that accepts multiple inputs of data but provides only a single output.	The demultiplexer refers to combinational circuit that a single input but directs it th outputs.	
	Technique of Conversion	A Multiplexer performs conversion from parallel to serial.	A Demultiplexer performs serial to parallel.	
	Common Name	Data Selector	Data Distributor	
a	Operational Principle	Multiplexer works on an operational principle of <i>many to one</i> .	Demultiplexer works on an principle of one to many.	[5]
	Configuration of Devices	It behaves as a data selector because the multiplexer is an N to 1 device.	It behaves as a data distrit demultiplexer is a 1 to N de	
	Total Number of Data Inputs	It has multiple inputs of data and signals.	It has a single input of data	
	Total Number of Data Outputs	A Multiplexer generates a single output for data and signals.	A Demultiplexer generates for data and signals.	

Characteristics of CISC Processor

Following are the main characteristics of the RISC processor:

- 1. The length of the code is shorts, so it requires very little RAM.
- 2. CISC or complex instructions may take longer than a single clock cycle to execute the code.
- 3. Less instruction is needed to write an application.
- 4. It provides easier programming in assembly language.
- Support for complex data structure and easy compilation of high-level languages.
- 6. It is composed of fewer registers and more addressing nodes, typically 5 to 20
- 7. Instructions can be larger than a single word.

Features of RISC Processor

Some important features of RISC processors are:

- One cycle execution time: For executing each instruction in a computer, the RISC processors require one CPI (Clock per cycle). And each CPI includes the fetch, decode and execute method applied in computer instruction.
- Pipelining technique: The pipelining technique is used in the RISC processors to execute multiple parts or stages of instructions to perform more efficiently.
- A large number of registers: RISC processors are optimized with multiple registers that can be used to store instruction and quickly respond to the computer and minimize interaction with computer memory.
- 4. It supports a simple addressing mode and fixed length of instruction for executing the pipeline.
- 5. It uses LOAD and STORE instruction to access the memory location.
- 6. Simple and limited instruction reduces the execution time of a process in a RISC.

[5]

3

CCI