Internal Assessment Test 2
January 2024

Sub Code:

Sub: | Object Oriented Programming with Java BCS306A | Branch:| AIML
Date [15-10-19 | Duration:90 m| Max Marks: 50 (56 /S€c: 1l OBE
) A/B/C
Answer any FIVE FULL Marks €O %
Questions "
1 (a) | What is a constructor? Name and explain the different types of constructor| 10
with example program.
e A constructor initializes an object immediately upon creation.
e It has the same name as the class in which it resides and is syntactically similar to a
method.
e Once defined, the constructor is automatically called when the object is created,
before the new operator completes.
e Constructors no return type, not even void. This is because the implicit return type
of a class’ constructor is the class type itself.
e [t is the constructor’s job to initialize the internal state of an object so that the code
creating an instance will have a fully initialized, usable object immediately.
Types of Constructors
1.Default Constructor
2.Parameterised constructor
Default Constructor : When the constructor is not define explicitly for a class, then Java
creates a default constructor for the class.
e The default constructor automatically initializes all instance variables to their CO2 | L2

default values, which are zero, null, and false, for numeric types, reference types,
and boolean, respectively.

.Parameterised constructor: Constructor with arguments(or you can say parameters) is
known as Parameterized constructor

Example
class Box {
double width;
double height;
double depth;

Box() { // This is Default constructor for Box.

System.out.printin(*Constructing Box™");
width = 10;
height = 10;
depth = 10;

Box(double w, double h, double d) { // This is parameter constructor for Box.
width = w;

height = h;
depth =d;
}

/ compute and return volume
double volume() {
return width * height * depth;

¥
¥

class BoxDemo7 {

public static void main(String args[]) {

/ declare, allocate, and initialize Box objects
Box mybox1 = new Box()

Box mybox2 = new Box(10, 20, 15);

double vol,

/ get volume of first box

vol = mybox1.volume();
System.out.printin("Volume is "' + vol);
/ get volume of second box

vol = mybox2.volume();
System.out.printin(*Volume is " + vol);

}

}
Output

Constructing Box
'Volume is 1000.0
'Volume is 3000.0

List and explain the uses of the keyword ‘super’ with Java programs.

e Whenever a subclass needs to refer to its immediate superclass, it can do so
by use of the keyword super.
e super has two general forms.
» The first calls the superclass’ constructor.
» The second is used to access a member of the superclass that has
been hidden by a member of a subclass.
Using super to Call Superclass Constructors
A subclass can call a constructor defined by its superclass by use of the
following form of super:
super(arg-list);
e Here, arg-list specifies any arguments needed by the constructor in the
superclass.
e super() mustalways be the first statement executed inside a subclass’

constructor.

10

CO3

L3

Example

class Box {

private double width;

private double height;

private double depth;

/ construct clone of an object

Box(Box ob) { // pass object to constructor
width = ob.width;

height = ob.height;

depth = ob.depth;

}
/ constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;

height = h;

depth =d;

}

/ constructor used when no dimensions specified
Box() {

width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box

}
/ compute and return volume
double volume() {

return width * height * depth;

ki
ki

/ BoxWeight now fully implements all constructors.
class BoxWeight extends Box {

double weight; // weight of box

/ constructor when all parameters are specified
BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

/I default constructor
BoxWeight() {
super();

weight = -1;

}

}

class DemoSuper {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
BoxWeight mybox3 = new BoxWeight(); // default

double vol;

vol = mybox1.volume();

System.out.printIn("VVolume of mybox1 is " + vol);
System.out.printIn("Weight of mybox1 is " + mybox1.weight);
System.out.printin();

vol = mybox3.volume();

System.out.printIn("VVolume of mybox3 is " + vol);
System.out.printIn("Weight of mybox3 is " + mybox3.weight);
System.out.printin();

k
¥

Second use of super to access a member of the superclass:
» The second form of super always refers to the superclass of the subclass in which it
is used.
The general form is
super.member

» Here, member can be either a method or an instance variable. The second form of
super is most
applicable to situations in which member names of a subclass hide members by the same
name in
the superclass.
Example:

Using super to overcome name hiding.
class A {
inti;
b
/ Create a subclass by extending class A.
class B extends A {

int i; // this i hides the i in A
B(int a, intb) {
super.i=a;//iin A
i=b;//iinB

}

void show() {

System.out.printIn(i in superclass: " + super.i);
System.out.printIn(i in subclass: " + i);

¥
¥

class UseSuper {

public static void main(String args[]) {
B subOb = new B(1, 2);
subOb.show();

}

}
This program displays the following:

i in superclass: 1
i in subclass: 2

Distinguish between method overloading and method overriding. Write Java
programs to demonstrate the use of method overloading and method overriding.

To implement this concept, the constraints are:
e The number of arguments should be different, and/or
e Type of the arguments must be different.

class Overload

void test() //method without any arguments

{

System.out.printIn("No parameters™);

}

void test(int a) //method with one integer argument
{

System.out.printin("Integer a: " + a);

void test(int a, int b) //two arguments

{

System.out.printin("With two arguments : " +a+" " + b);

void test(double a) //one argument of double type

{
System.out.printin("double a: " + a);
}
}

class OverloadDemo

{

public static void main(String args[])
{
Overload ob = new Overload();
ob.test();

ob.test(10);

ob.test(10, 20);

Having more than one method with a same name is called as method overloading.

10

CO2

L2

ob.test(123.25);

}
}

e Inaclass hierarchy, when a method in a subclass has the same name and type
signature as a method in its super class, then the method in the subclass is said
to override the method in the super class.

e When an overridden method is called from within a subclass, it will always
refer to the version of that method defined by the subclass. The version of the
method defined by the super class will be hidden.

class A

L

inti, j;

A(int a, int b)

{

i=a;

j =D;

¥

void show() //suppressed
{
System.out.printin(*iand j: " + i+ " " +j);
}

}

class B extends A

{

int k;

B(inta, int b, int ¢)

{

super(a, b);
k=c;

}

void show() //Overridden method

{
System.out.printin("k: " + k);
}
}

class Override

{

public static void main(String args[])
{
B subOb = new B(1, 2, 3);
subOb.show();

}
}

4a.

What is inheritance? Explain inheritance with the help of a Java program.

¢ Inheritance is one of the building blocks of object oriented programming
languages. It allows creation of classes with hierarchical relationship among
them.

e Using inheritance, one can create a general class that defines traits common
to a set of related items. This class can then be inherited by other, more
specific classes, each adding those things that are unique to it.

e Aclass that is inherited is called a superclass. The class that does the
inheriting is called a subclass.

e The general form of a class declaration that inherits a superclass:
class subclass-name extends superclass-name {

// body of class

}

Example
class A
{
inti, j;

void showij()
{
System.out.printin("iand j: " +i+"" +j);
}
}
class B extends A
{
int k;

void showk()

{
System.out.printin("k: ** + k);

void sum()
{
System.out.printin("i+j+k: " + (i+j+k));
}
}

class Simplelnheritance

{

public static void main(String args[])
{
A superOb = new A();

B subOb = new B();

superOb.i = 10;

superOb.j = 20;
System.out.printIn(*Contents of superOb: ");
superOb.showij();

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.printin("Contents of subOb: ™);

subOb.showij();

CO3

L2

subOb.showk();
System.out.printIn("Sum of i, j and k in subOb:");
subOb.sum();

I
}

4. b

What is an abstract class? Explain abstract class with the help of a Java program

A class containing at least one abstract method is called as abstract class. Abstract
classes cannot be instantiated, that is one cannot create an object of abstract class.
Whereas, a reference can be created for an abstract class.
» To declare an abstract method, use this general form:
abstract type name(parameter-list);
No method body is present.

abstract class A
{
abstract void callme();
void callmetoo()

{
System.out.printIn("This is a concrete method.");
}
}

class B extends A

void callme() //overriding abstract method

{
System.out.printin("B's implementation of callme.");
}
}

class AbstractDemo

{

public static void main(String args[])
{
B = new B(); //subclass object
b.callme(); //calling abstract method
b.callmetoo(); //calling concrete method

}
ki

CO3

L4

With an example explain finalize() method in java

Java provides a mechanism called finalization to handle situations where specific
actions are required before an object is reclaimed by the garbage collector.

Objects may hold non-Java resources like file handles or character fonts.
It is essential to free these resources before an object is destroyed.
To add a finalizer to a class, define the finalize () method.
The Java runtime automatically calls this method when it is about to recycle
an object of that class.
e Inside the finalize () method, specify actions that must be performed
before an object is destroyed.

This method is called by the garbage collector just before reclaiming the
object

The garbage collector runs periodically to identify and reclaim objects that
are no longer referenced.

Objects without any live references are candidates for garbage collection.
Just before an object is freed, the Java runtime invokes the finalize ()
method on that object.

This provides an opportunity to release resources or perform other necessary
cleanup tasks.

The garbage collector identifies and marks objects that are eligible for
finalization.

Finalization ensures proper resource management and cleanup before the
object is deallocated.

The finalize() method has this general form:
protected void finalize() {

/I finalization code here

}

CO2

L2

5.b

Write a note on use of ‘this’ keyword

Sometimes a method will need to refer to the object that invoked it.

this can be used inside any method to refer to the current object. That is, this
is always a reference to the object on which the method was invoked. You
can use this anywhere a reference to an object of the current class ’ type is
permitted.

Example
/I A redundant use of this

Box(double w, double h, double d) {

CO2

L2

this.width = w;

this.height = h;
this.depth = d;
¥

Design a Java class called Stack with the following instance variables
(i) private int stck[] (ii) private int tos

and methods

(i) void push(int)

(i) int pop()

\Write a Java program to create Stack object with stack size 5. Call the method push()
to push 5 elements on to stack and display the output of the pop() operation.

/ This class defines an integer stack that can hold 5Svalues

class Stack
{
private int stck[];
private int tos;
/I allocate and initialize stack
Stack(int size)
{

stck = new int[size];

tos =-1;

}

/I Push an item onto the stack
void push(int item)

{
if(tos==stck.length-1) // use length member
System.out.printIn("Stack is full.");
else
stck[++tos] = item;
}
/[Pop an item from the stack
int pop()
{
if(tos < 0)
{
System.out.printIn("Stack underflow.");
return O;
}
else
return stck[tos--];
}

CO3

L3

class TestStack?2
{

public static void main(String args[])

{
Stack mystack = new Stack(5);

I/ push some numbers onto the stack
for(int i=0; i<5; i++)
mystack.push(i);

Il pop those numbers off the stack

System.out.printIn("Stack in mystack:");

for(int i=0; i<5; i++)
System.out.printIn(mystack.pop());

b
¥
Output:

Stack in mystack:
4

3
2
1
0

