

Internal Assessment Test 2

January 2024

Sub: Object Oriented Programming with Java
Sub Code:

BCS306A Branch: AIML

Date

:

15 -10 -19 Duration:90 m Max Marks: 50
Sem /Sec:

III

A/B/C

OBE

Answer any FIVE FULL

Questions

Marks CO R

B

T

1 (a) What is a constructor? Name and explain the different types of constructor

with example program.

• A constructor initializes an object immediately upon creation.

• It has the same name as the class in which it resides and is syntactically similar to a

method.

• Once defined, the constructor is automatically called when the object is created,

before the new operator completes.

• Constructors no return type, not even void. This is because the implicit return type

of a class’ constructor is the class type itself.

• It is the constructor’s job to initialize the internal state of an object so that the code

 creating an instance will have a fully initialized, usable object immediately.

Types of Constructors

1.Default Constructor

2.Parameterised constructor

 Default Constructor : When the constructor is not define explicitly for a class, then Java

creates a default constructor for the class.

• The default constructor automatically initializes all instance variables to their

default values, which are zero, null, and false, for numeric types, reference types,

and boolean, respectively.

.Parameterised constructor: Constructor with arguments(or you can say parameters) is

known as Parameterized constructor

Example

class Box {

double width;

double height;

double depth;

Box() { // This is Default constructor for Box.

System.out.println("Constructing Box");

width = 10;

height = 10;

depth = 10;

}

10

CO2 L2

Box(double w, double h, double d) { // This is parameter constructor for Box.

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo7 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box()

Box mybox2 = new Box(10, 20, 15);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}

}

Output

Constructing Box

Volume is 1000.0

Volume is 3000.0

2. List and explain the uses of the keyword ‘super’ with Java programs.

• Whenever a subclass needs to refer to its immediate superclass, it can do so

by use of the keyword super.

• super has two general forms.

➢ The first calls the superclass’ constructor.

➢ The second is used to access a member of the superclass that has

been hidden by a member of a subclass.

 Using super to Call Superclass Constructors

 A subclass can call a constructor defined by its superclass by use of the

following form of super:

 super(arg-list);

• Here, arg-list specifies any arguments needed by the constructor in the

superclass.

• super() must always be the first statement executed inside a subclass’

constructor.

10

CO3 L3

Example

class Box {

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob) { // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

// BoxWeight now fully implements all constructors.

class BoxWeight extends Box {

double weight; // weight of box

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m) {

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

weight = -1;

}

}

class DemoSuper {

public static void main(String args[]) {

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox3 = new BoxWeight(); // default

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox3.volume();

System.out.println("Volume of mybox3 is " + vol);

System.out.println("Weight of mybox3 is " + mybox3.weight);

System.out.println();

}

}

Second use of super to access a member of the superclass:

➢ The second form of super always refers to the superclass of the subclass in which it

is used.

The general form is

super.member

➢ Here, member can be either a method or an instance variable. The second form of

super is most

applicable to situations in which member names of a subclass hide members by the same

name in

the superclass.

Example:

/ Using super to overcome name hiding.

class A {

int i;

}

// Create a subclass by extending class A.

class B extends A {

int i; // this i hides the i in A

B(int a, int b) {

super.i = a; // i in A

i = b; // i in B

}

void show() {

System.out.println("i in superclass: " + super.i);

System.out.println("i in subclass: " + i);

}

}

class UseSuper {

public static void main(String args[]) {

B subOb = new B(1, 2);

subOb.show();

}

}

This program displays the following:

i in superclass: 1

i in subclass: 2

3 Distinguish between method overloading and method overriding. Write Java

programs to demonstrate the use of method overloading and method overriding.

Having more than one method with a same name is called as method overloading.

To implement this concept, the constraints are:

● The number of arguments should be different, and/or

● Type of the arguments must be different.

class Overload

{

void test() //method without any arguments

{

System.out.println("No parameters");

}

void test(int a) //method with one integer argument

{

System.out.println("Integer a: " + a);

}

void test(int a, int b) //two arguments

{

System.out.println("With two arguments : " + a + " " + b);

}

void test(double a) //one argument of double type

{

System.out.println("double a: " + a);

}

}

class OverloadDemo

{

public static void main(String args[])

{

Overload ob = new Overload();

ob.test();

ob.test(10);

ob.test(10, 20);

10

CO2 L2

ob.test(123.25);

}

}

• In a class hierarchy, when a method in a subclass has the same name and type

signature as a method in its super class, then the method in the subclass is said

to override the method in the super class.

• When an overridden method is called from within a subclass, it will always

refer to the version of that method defined by the subclass. The version of the

method defined by the super class will be hidden.

class A

{

int i, j;

A(int a, int b)

{

i = a;

j = b;

}

void show() //suppressed

{

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A

{

int k;

B(int a, int b, int c)

{

super(a, b);

k = c;

}

void show() //Overridden method

{

System.out.println("k: " + k);

}

}

class Override

{

public static void main(String args[])

{

B subOb = new B(1, 2, 3);

subOb.show();

}

}

4a. What is inheritance? Explain inheritance with the help of a Java program.

• Inheritance is one of the building blocks of object oriented programming

languages. It allows creation of classes with hierarchical relationship among

them.

• Using inheritance, one can create a general class that defines traits common

to a set of related items. This class can then be inherited by other, more

specific classes, each adding those things that are unique to it.

• A class that is inherited is called a superclass. The class that does the

inheriting is called a subclass.

• The general form of a class declaration that inherits a superclass:

class subclass-name extends superclass-name {

// body of class

}

Example

class A

{

int i, j;

void showij()

{

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A

{

int k;

void showk()

{

System.out.println("k: " + k);

}

void sum()

{

System.out.println("i+j+k: " + (i+j+k));

}

}

class SimpleInheritance

{

public static void main(String args[])

{

A superOb = new A();

B subOb = new B();

superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");

superOb.showij();

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

subOb.showij();

 6

CO3 L2

subOb.showk();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}
}

4. b What is an abstract class? Explain abstract class with the help of a Java program

A class containing at least one abstract method is called as abstract class. Abstract

classes cannot be instantiated, that is one cannot create an object of abstract class.

Whereas, a reference can be created for an abstract class.

• To declare an abstract method, use this general form:

abstract type name(parameter-list);

No method body is present.

abstract class A

{

abstract void callme();

void callmetoo()

{

System.out.println("This is a concrete method.");

}

}

class B extends A

{

void callme() //overriding abstract method

{

System.out.println("B's implementation of callme.");

}

}

class AbstractDemo

{

public static void main(String args[])

{

B = new B(); //subclass object

b.callme(); //calling abstract method

b.callmetoo(); //calling concrete method

}

}

 4

CO3 L4

5. a With an example explain finalize() method in java

• Java provides a mechanism called finalization to handle situations where specific

actions are required before an object is reclaimed by the garbage collector.

• Objects may hold non-Java resources like file handles or character fonts.

• It is essential to free these resources before an object is destroyed.

• To add a finalizer to a class, define the finalize() method.

• The Java runtime automatically calls this method when it is about to recycle

an object of that class.

• • Inside the finalize() method, specify actions that must be performed

before an object is destroyed.

• This method is called by the garbage collector just before reclaiming the

object

• The garbage collector runs periodically to identify and reclaim objects that

are no longer referenced.

• Objects without any live references are candidates for garbage collection.

• Just before an object is freed, the Java runtime invokes the finalize()

method on that object.

• This provides an opportunity to release resources or perform other necessary

cleanup tasks.

• The garbage collector identifies and marks objects that are eligible for

finalization.

• Finalization ensures proper resource management and cleanup before the

object is deallocated.

The finalize() method has this general form:

protected void finalize() {

// finalization code here

}

 6

CO2 L2

5.b Write a note on use of ‘this’ keyword

• Sometimes a method will need to refer to the object that invoked it.

• this can be used inside any method to refer to the current object. That is, this

is always a reference to the object on which the method was invoked. You

can use this anywhere a reference to an object of the current class ’ type is

permitted.

Example

// A redundant use of this

Box(double w, double h, double d) {

 4

CO2 L2

this.width = w;

this.height = h;

this.depth = d;

}

6 Design a Java class called Stack with the following instance variables

(i) private int stck[] (ii) private int tos

and methods

(i) void push(int)

(ii) int pop()

Write a Java program to create Stack object with stack size 5. Call the method push()

to push 5 elements on to stack and display the output of the pop() operation.

// This class defines an integer stack that can hold 5values

class Stack

{

 private int stck[];

 private int tos;

 // allocate and initialize stack

 Stack(int size)

 {

 stck = new int[size];

 tos = -1;

 }

 // Push an item onto the stack

 void push(int item)

 {

 if(tos==stck.length-1) // use length member

 System.out.println("Stack is full.");

 else

 stck[++tos] = item;

 }

 // Pop an item from the stack

 int pop()

 {

 if(tos < 0)

 {

 System.out.println("Stack underflow.");

 return 0;

 }

 else

 return stck[tos--];

 }

}

CO3 L3

class TestStack2

{

 public static void main(String args[])

 {

 Stack mystack = new Stack(5);

 // push some numbers onto the stack

 for(int i=0; i<5; i++)

 mystack.push(i);

 // pop those numbers off the stack

 System.out.println("Stack in mystack:");

 for(int i=0; i<5; i++)

 System.out.println(mystack.pop());

 }

}

Output:

Stack in mystack:

4

3

2

1

0

