USN					

Internal Assessment Test 2– January 2024

Sub:	Automata Theory & Compiler Design	Sub	21CS51	Branch:	AIM	IL	
Date:	30/1/2024 Duration: 90 min's Max Marks: 50	Code: Sem/Sec:	V/A		OBE		
	Answer any FIVE FULL Quest		, ,,,,	M	ARKS	СО	RBT
1	Explain the role of lexical analyzer in compiler . 5 m Also explain input buffering withthe help of an exam Solution Read Characters Lexical Analyzer Ask for token Characters Characters token Input Push Back extra Characters token In t i , j : i = j + 1 ; j = j + 1 ; In t i , j : i = j + 1 ; j = j + 1 ;	arks uple. 5 mark			10	CO2	L1
2	Convert the following DFA to corresponding Regular Exp Solution (0+11*0) (0+11*0)* (0+11*0) (0+11*0)*	ression using	Kijk Method		10	CO2	L2
3	State Pumping Lemma Theorem. 5Marks Prove that $L=\{L=\{x^n n \text{ is a prime}\}\text{ is not a regular language.}$ 5 Marks Solution:				10	CO2	L2

	We use the following property of L. If $w \in L$, then $ w $ is a prime. Step 1: Suppose L = L(G) is context-free. Let n be the natural number obtained by using the pumping lemma.			
	pumping lemma. Step 2: Let P be a prime number greater than n . Then $z = a^n \in L$, we write $z = u \vee w \times y$. Step 3: By pumping lemma, $u \vee^0 w \times^0 y = u w y \in L$. So $ u w y $ is a prime number say q . Let $ vx = r$. Then $ u v^q w \times^d y = q + qr$. As $q + q^n$ is not a prime, $u \vee^q w \times^q y \notin L$. This is a contradiction. Therefore L is not context free.			
4a)	Eliminate the unit productions from the following: S->XY X->0 Y->Z 1 Z->M M->N N->0	5	CO2	L1
4b)	Remove NULL productions from following with all the required steps.	5	CO2	L2
	S->XYaC X->XY Y->b \varepsilon C->D \varepsilon D->d Solutio			
5	Simplify the given CFG. S->a aA B C A->aB ε B->aA C->cCD D->ddd	10	CO3	L3
	Solution: $ \begin{array}{c ccccc} P & V & V \\ \hline S & C & S \\ S - a & A & S A \\ A - A & A - A & S A B \\ \hline B - a A & A - A & S A B \\ \hline E + a A & A - A & S A B \\ \hline T = \{a, A\} & S - B = S \\ P_1 = \{S - a aA \\ A - A aB \\ B - aA\} $			
6	The grammar G with production rules. 5 marks Test for ambiguity and find LMD and RMD.S->0XS 0 X->SX SS 00 w=0000000	10	CO2	L3

5 Marks		
Solution		
Students may		
find out any		
two lmds or		
2 rmds and		
prove for		
ambiguity.		

Faculty Signature CCI Signature HOD Signature