
CMR

INSTITUTE SCHEME OF EVALUATION
OF TECHNOLOGY

Sub:

Date:

Internal Assessment Test 2 – Jan-Feb. 2024

Code:

Branch:

Note: Answer any five full questions. (5 X 10 =

50)

Question

No.
Description Marks Split up

Total

Marks

1.  Steps for ER to relational mapping

10
10M

10M

2. a)  Constraints name of relational model

 Dynamic SQL

 Embedded SQL

6 6M
10M

b) 2

2

 4M

3. a)  Trigger

 Assertion

5

5

10M

10M

4.  Normalization

 First Normal Form

 Second Normal Form

 Third Normal Form

1

3

3

3

10M

10M

5. a)  Informal Design Guidelines

6M

 6M

10M
Bbb)

b b)

i. Multivalued Dependency

ii. Fourth Normal Form
 2

 2

$444M

6.  First Query

 Second Query

 Third Query

 Fourth Query

 Fifth Query

 2

2

2

2
2

 10M

AIML

21CS53 DATABASE MANAGEMENT SYSTEMS

 1/2/2024 Duration: 90 mins Max Marks: 50 Sem: 5

USN

Internal Assessment Test 2 – Jan-Feb 2024

Sub: Database Management Systems Sub Code: 21CS53 Branch: AIML

Date: 1/2/24 Duration: 90 minutes Max Marks: 50 Sem/Sec: V OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Briefly describe the steps involved in ER- to relational mapping algorithm. [10] 2 L3

2
a Explain the different relational model constraints. [6] 2 L1

b What is Dynamic SQL and how is it different from embedded SQL? [4] 3 L1

3 How trigger and assertion can be defined in SQL? Explain with example. [10] 3 L1

4 Define Normalization.Explain 1NF, 2NF and 3NF with suitable examples for each. [10] 4 L2

5
a

Explain the informal design guidelines used as measures to determine the quality of relation schema

design.
[6] 4 L2

b Define multivalued dependency. Explan fourth normal form with an example. [4] 4 L1

6

Consider the following schema for OrderDatabase

SALESMAN (Salesman_id, Name, City, Commission)

CUSTOMER (Customer_id, Cust_Name, City, Grade,Salesman_id)

ORDERS (Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)

Write SQL queries for the following:

1. Count the customers with grades above Bangalore’s average.

2. Find the name and numbers of all salesmen who had more than one customer.

3. List all salesmen and indicate those who have and don’t have customers in

 their cities (Use UNION operation.)

4.Create a view that finds the salesman who has the customer with the highest

 order of a day.

5.Demonstrate the DELETE operation by removing salesman with id 1000.

All his orders must also be deleted.

[10] 3 L3

CI CCI HoD

--All the Best--

Q1. Briefly describe the steps involved in ER- to relational mapping algorithm

 Ans: ER Model when conceptualized into diagrams gives a good overview of entity-relationship, which is easier to
understand.

 ER diagrams can be mapped to Relational schema using step by step procedure.

 Though all the ER constraints cannot be imported into Relational model but an approximate schema can be generated.

ER Diagrams mainly comprised of:

 Entity and its attributes

 Relationship which is association among entities

Mapping Entity

An entity is a real world object with some attributes.

 Create table for each entity

 Entity's attributes should become fields of tables with their respective data types.

 Declare primary key

Mapping relationship

A relationship is association among entities.

 Create table for a relationship

 Add the primary keys of all participating Entities as fields of table with their respective data types.

 If relationship has any attribute, add each attribute as field of table.

 Declare a primary key composing all the primary keys of participating entities.

 Declare all foreign key constraints.

Mapping Weak Entity Sets

A weak entity sets is one which does not have any primary key associated with it.

 Create table for weak entity set

 Add all its attributes to table as field

 Add the primary key of identifying entity set

 Declare all foreign key constraints

Mapping hierarchical entities

ER specialization or generalization comes in the form of hierarchical entity sets.

 Create tables for all higher level entities

 Create tables for lower level entities

 Add primary keys of higher level entities in the table of lower level entities

 In lower level tables, add all other attributes of lower entities.

 Declare primary key of higher level table the primary key for lower level table

Q2(a). Explain the different relational model constraints.

 Ans: 1. Domain Constraints

 Every domain must contain atomic values(smallest indivisible units) which means composite and multi-valued attributes

are not allowed.

 We perform a datatype check here, which means when we assign a data type to a column we limit the values that it can

contain. Eg. If we assign the datatype of attribute age as int, we can’t give it values other than int datatype.

Example:

EID Name Phone

01 Bikash Dutta
123456789

234456678

Explanation: In the above relation, Name is a composite attribute and Phone is a multi-values attribute, so it is violating

domain constraint.

2. Key Constraints or Uniqueness Constraints

 These are called uniqueness constraints since it ensures that every tuple in the relation should be unique.

 A relation can have multiple keys or candidate keys(minimal superkey), out of which we choose one of the keys as the

primary key, we don’t have any restriction on choosing the primary key out of candidate keys, but it is suggested to go with

the candidate key with less number of attributes.

 Null values are not allowed in the primary key, hence Not Null constraint is also part of the key constraint.

Example:

EID Name Phone

01 Bikash 6000000009

02 Paul 9000090009

01 Tuhin 9234567892

https://www.geeksforgeeks.org/types-of-keys-in-relational-model-candidate-super-primary-alternate-and-foreign/

Explanation: In the above table, EID is the primary key, and the first and the last tuple have the same value in EID ie 01, so it
is violating the key constraint.

3. Entity Integrity Constraints

 Entity Integrity constraints say that no primary key can take a NULL value, since using the primary key we identify each

tuple uniquely in a relation.

Example:

EID Name Phone

01 Bikash 9000900099

02 Paul 600000009

NULL Sony 9234567892

Explanation: In the above relation, EID is made the primary key, and the primary key can’t take NULL values but in the third

tuple, the primary key is null, so it is violating Entity Integrity constraints.

4. Referential Integrity Constraints

 The Referential integrity constraint is specified between two relations or tables and used to maintain the consistency among

the tuples in two relations.

 This constraint is enforced through a foreign key, when an attribute in the foreign key of relation R1 has the same

domain(s) as the primary key of relation R2, then the foreign key of R1 is said to reference or refer to the primary key of

relation R2.

 The values of the foreign key in a tuple of relation R1 can either take the values of the primary key for some tuple in

relation R2, or can take NULL values, but can’t be empty.

Example:

EID Name DNO

01 Divine 12

02 Dino 22

04 Vivian 14

DNO Place

12 Jaipur

13 Mumbai

14 Delhi

Explanation: In the above tables, the DNO of Table 1 is the foreign key, and DNO in Table 2 is the primary key. DNO = 22 in

the foreign key of Table 1 is not allowed because DNO = 22 is not defined in the primary key of table 2. Therefore, Referential

integrity constraints are violated here.

Q2 (b) What is Dynamic SQL and how is it different from embedded SQL?

Ans : Embedded SQL

Embedded SQL is a method that combines SQL with a high−level programming language's features. It enables programmers to

put SQL statements right into the source code files used to set up an application. Database operations may be carried out

effortlessly by developers by adding SQL statements to the application code. The source code files having embedded SQL

statements should be preprocessed before compilation because of the issue of interpretation of SQL statements by the high−level

programming languages in embedded SQL. The terms EXEC SQL and END_EXEC must be used before and after each SQL

statement in the source code file. In embedded SQL, host variables play a key role. These variables serve as an intermediary for

data transfer between the application and the database. There are two different kinds of host variables: input host variables that

provide data to the database and output host variables that receive that data.

https://www.geeksforgeeks.org/difference-between-primary-key-and-unique-key/

Example

This example shows the embedded code written in C++, retrieving the customer id, and name from the database.

Input

Student

id roll_no name address

1 21 monu gonda

Example

int main(){

/* connecting to database */

EXEC SQL CONNECT student;

/* declaring variables */

EXEC SQL BEGIN DECLARE SECTION;

int id;

int roll_no;

char name[10];

char address[30];

EXEC SQL END DECLARE SECTION;

/* set up error processing */

EXEC SQL WHENEVER SQLWARNING DO display_warning();

EXEC SQL WHENEVER SQLERROR STOP;
EXEC SQL WHENEVER NOT FOUND GOTO lbl_no_records;

/* Execute the sql query */

EXEC SQL SELECT * FROM STUDENT WHERE STUDENT_ID = :STD_ID;

/* Display result */

printf("id: %d", id);

printf("name: %d", name);

exit();

Dynamic SQL

Dynamic SQL involves the creation and execution of SQL statements at runtime. Dynamic SQL allows developers to generate

SQL statements dynamically based on runtime conditions or user input. By combining changeable data, conditions, and dynamic

database or column names, developers may quickly construct SQL queries using dynamic SQL. Because of its adaptability,

dynamic SQL is a good choice when the SQL statements need to change in response to evolving needs or user inputs. Dynamic

SQL queries are built at execution time so the system chooses how to access the database and conduct the SQL queries.

Performance could be affected as a result of this lack of preparation because the system must create an execution plan on the spot.

Dynamic SQL, however, provides outstanding adaptability and versatility.

Steps to use Dynamic SQL

Step 1: Declare two variables

DECLARE

@var1 NVARCHAR(MAX),

@var2 NVARCHAR(MAX);

Step 2: Set the value of the first variable as table_name

SET @var1 = N'table_name';

Step 3: Select statement is added to table_name to create dynamic SQL

SET @var2= N'SELECT * FROM ' + @var1;

Step 4: Use the second variable to run the sp_executesql

Q3 How trigger and assertion can be defined in SQL? Explain with example.

Solution

 What are Assertions?

When a constraint involves 2 (or) more tables, the table constraint mechanism is sometimes hard and results may not come as

expected. To cover such situation SQL supports the creation of assertions that are constraints not associated with only one

table. And an assertion statement should ensure a certain condition will always exist in the database. DBMS always checks the

assertion whenever modifications are done in the corresponding table.

Syntax –

CREATE ASSERTION [assertion_name]

CHECK ([condition]);

Example –

CREATE TABLE sailors (sid int,sname varchar(20), rating int,primary key(sid),

CHECK(rating >= 1 AND rating <=10)

CHECK((select count(s.sid) from sailors s) + (select count(b.bid)from boats b)<100));

In the above example, we enforcing CHECK constraint that the number of boats and sailors should be less than 100. So here

we are able to CHECK constraints of two tablets simultaneously.

2. What are Triggers?

A trigger is a database object that is associated with the table, it will be activated when a defined action is executed for the

table. The trigger can be executed when we run the following statements:

1. INSERT

2. UPDATE

3. DELETE

And it can be invoked before or after the event.

Syntax –

create trigger [trigger_name]

[before | after]

{insert | update | delete}

on [table_name]

[for each row]

[trigger_body]

Example –

create trigger t1 before UPDATE on sailors

for each row

begin

 if new.age>60 then

 set new.age=old.age;

 else

 set new.age=new.age;

 end if;

end;

$

Q4. Define Normalization.Explain 1NF, 2NF and 3NF with suitable examples for each.

Ans. Normalization is the process of organizing the data and the attributes of a database. It is performed to reduce the data

redundancy in a database and to ensure that data is stored logically. Data redundancy in DBMS means having the same data but at

multiple places. It is necessary to remove data redundancy because it causes anomalies in a database which makes it very hard for
a database administrator to maintain it.

https://www.geeksforgeeks.org/sql-tutorial/
https://www.geeksforgeeks.org/sql-trigger-student-database/
https://www.scaler.com/topics/redundancy-in-dbms/

First Normal Form (1NF)

A relation is in 1NF if every attribute is a single-valued attribute or it does not contain any multi-valued or composite attribute,
i.e., every attribute is an atomic attribute. If there is a composite or multi-valued attribute, it violates the 1NF. To solve this, we

can create a new row for each of the values of the multi-valued attribute to convert the table into the 1NF.

Let’s take an example of a relational table <EmployeeDetail> that contains the details of the employees of the company.

<EmployeeDetail>

Employee Code Employee Name Employee Phone Number

101 John 98765623,998234123

101 John 89023467

102 Ryan 76213908

103 Stephanie 98132452

Here, the Employee Phone Number is a multi-valued attribute. So, this relation is not in 1NF.

To convert this table into 1NF, we make new rows with each Employee Phone Number as a new row as shown below:

<EmployeeDetail>

Employee Code Employee Name Employee Phone Number

101 John 998234123

101 John 98765623

101 John 89023467

102 Ryan 76213908

103 Stephanie 98132452

Second Normal Form (2NF)

The normalization of 1NF relations to 2NF involves the elimination of partial dependencies. A partial dependency in

DBMS exists when any non-prime attributes, i.e., an attribute not a part of the candidate key, is not fully functionally dependent

on one of the candidate keys.

For a relational table to be in second normal form, it must satisfy the following rules:

1. The table must be in first normal form.

2. It must not contain any partial dependency, i.e., all non-prime attributes are fully functionally dependent on the primary

key.

If a partial dependency exists, we can divide the table to remove the partially dependent attributes and move them to some other

table where they fit in well.

Let us take an example of the following <EmployeeProjectDetail> table to understand what is partial dependency and how to

normalize the table to the second normal form:

<EmployeeProjectDetail>

Employee Code Project ID Employee Name Project Name

101 P03 John Project103

101 P01 John Project101

102 P04 Ryan Project104

103 P02 Stephanie Project102

In the above table, the prime attributes of the table are Employee Code and Project ID. We have partial dependencies in this table

because Employee Name can be determined by Employee Code and Project Name can be determined by Project ID. Thus, the

above relational table violates the rule of 2NF.

The prime attributes in DBMS are those which are part of one or more candidate keys.

https://www.scaler.com/topics/composite-attribute-in-dbms/
https://www.scaler.com/topics/partial-dependency-in-dbms/
https://www.scaler.com/topics/partial-dependency-in-dbms/
https://www.scaler.com/topics/partial-dependency-in-dbms/
https://www.scaler.com/topics/prime-attributes-in-dbms/

To remove partial dependencies from this table and normalize it into second normal form, we can decompose the

<EmployeeProjectDetail> table into the following three tables:

<EmployeeDetail>

Employee Code Employee Name

101 John

101 John

102 Ryan

103 Stephanie

<EmployeeProject>

Employee Code Project ID

101 P03

101 P01

102 P04

103 P02

<ProjectDetail>

Project ID Project Name

P03 Project103

P01 Project101

P04 Project104

P02 Project102

Thus, we’ve converted the <EmployeeProjectDetail> table into 2NF by decomposing it into <EmployeeDetail>, <ProjectDetail>
and <EmployeeProject> tables. As you can see, the above tables satisfy the following two rules of 2NF as they are in 1NF and

every non-prime attribute is fully dependent on the primary key.

The relations in 2NF are clearly less redundant than relations in 1NF. However, the decomposed relations may still suffer from

one or more anomalies due to the transitive dependency. We will remove the transitive dependencies in the Third Normal Form.

Third Normal Form (3NF)

The normalization of 2NF relations to 3NF involves the elimination of transitive dependencies in DBMS.

A functional dependency X -> Z is said to be transitive if the following three functional dependencies hold:

 X -> Y

 Y does not -> X

 Y -> Z

For a relational table to be in third normal form, it must satisfy the following rules:

1. The table must be in the second normal form.

2. No non-prime attribute is transitively dependent on the primary key.

3. For each functional dependency X -> Z at least one of the following conditions hold:

 X is a super key of the table.

 Z is a prime attribute of the table.

If a transitive dependency exists, we can divide the table to remove the transitively dependent attributes and place them to a new

table along with a copy of the determinant.

Let us take an example of the following <EmployeeDetail> table to understand what is transitive dependency and how to

normalize the table to the third normal form:

<EmployeeDetail>

https://www.scaler.com/topics/transitive-dependency-in-dbms/

Employee Code Employee Name Employee Zipcode Employee City

101 John 110033 Model Town

101 John 110044 Badarpur

102 Ryan 110028 Naraina

103 Stephanie 110064 Hari Nagar

The above table is not in 3NF because it has Employee Code -> Employee City transitive dependency because:

 Employee Code -> Employee Zipcode

 Employee Zipcode -> Employee City

Also, Employee Zipcode is not a super key and Employee City is not a prime attribute.

To remove transitive dependency from this table and normalize it into the third normal form, we can decompose the

<EmployeeDetail> table into the following two tables:

<EmployeeDetail>

Employee Code Employee Name Employee Zipcode

101 John 110033

101 John 110044

102 Ryan 110028

103 Stephanie 110064

<EmployeeLocation>

Employee Zipcode Employee City

110033 Model Town

110044 Badarpur

110028 Naraina

110064 Hari Nagar

Thus, we’ve converted the <EmployeeDetail> table into 3NF by decomposing it into <EmployeeDetail> and

<EmployeeLocation> tables as they are in 2NF and they don’t have any transitive dependency.

The 2NF and 3NF impose some extra conditions on dependencies on candidate keys and remove redundancy caused by that.

However, there may still exist some dependencies that cause redundancy in the database. These redundancies are removed by a

more strict normal form known as BCNF

Q5(a). Explain the informal design guidelines used as measures to determine the quality of relation schema design.

Ans.

INFORMAL DESIGN GUIDELINES FOR RELATIONAL

SCHEMA 1.Semantics of the Attributes

2.Reducing the Redundant Value in Tuples.

3.Reducing Null values in Tuples.

4.Dissallowing spurious Tuples.

1. Semantics of the Attributes

Whenever we are going to form relational schema there should be some meaning among the attributes.This meaning is called
semantics.This semantics relates one attribute to another with some relation.

2. Reducing the Redundant Value in Tuples

Mixing attributes of multiple entities may cause problems Information is stored redundantly wasting storage Problems with update

anomalies Insertion anomalies Deletion anomalies Modification anomalies.

3. Reducing Null values in Tuples.

 Note: Relations should be designed such that their tuples will have as few NULL values as possible Attributes that are NULL

frequently could be placed in separate relations (with the primary key) Reasons for nulls: attribute not applicable or invalid

attribute value unknown (may exist) value known to exist, but unavailable

4. Disallowing spurious Tuples

 Bad designs for a relational database may result in erroneous results for certain JOIN operations The "lossless join" property is

used to guarantee meaningful results for join operations Note: The relations should be designed to satisfy the lossless join
condition. No spurious tuples should be generated by doing a natural-join o

Q5(b) Define multivalued dependency. Explan fourth normal form with an example.
Ans.

Multivalued dependency would occur whenever two separate attributes in a given table happen to be independent of each other.

And yet, both of these depend on another third attribute. The multivalued dependency contains at least two of the attributes

dependent on the third attribute. This is the reason why it always consists of at least three of the attributes.

Example

Suppose that there is a car manufacturing company that produces two of the colours in the market, i.e., red and yellow of each of

their models, every year.

CAR_MODEL MANUF_MONTH COLOUR

S2011 JAN Yellow

S2001 FEB Red

S3001 MAR Yellow

S3001 APR Red

S4006 MAY Yellow

S4006 JUN Red

In this case, the columns COLOUR and MANUF_MONTH are dependent on CAR_MODEL, and they are independent of each

other. Thus, we can call both of these columns multivalued. These are, as a result, dependent on CAR_MODEL. Here is a

representation of the dependencies we discussed above:

CAR_MODEL → → MANUF_MONTH

CAR_MODEL → → COLOUR

We can read this as “CAR_MODEL multidetermined MANUF_MONTH” and “CAR_MODEL multidetermined COLOUR”.

Fourth Normal Form (4NF)

The Fourth Normal Form (4NF) is a level of database normalization where there are no non-trivial multivalued dependencies

other than a candidate key. It builds on the first three normal forms (1NF, 2NF, and 3NF) and the Boyce-Codd Normal Form

(BCNF). It states that, in addition to a database meeting the requirements of BCNF, it must not contain more than one

multivalued dependency.

Properties

A relation R is in 4NF if and only if the following conditions are satisfied:

1. It should be in the Boyce-Codd Normal Form (BCNF).
2. The table should not have any Multi-valued Dependency.

A table with a multivalued dependency violates the normalization standard of the Fourth Normal Form (4NF) because it

creates unnecessary redundancies and can contribute to inconsistent data. To bring this up to 4NF, it is necessary to break this

information into two

tables.

Example: Consider the database table of a class that has two relations R1 contains student ID(SID) and student name

(SNAME) and R2 contains course id(CID) and course name (CNAME).

Table R1

SID SNAME

S1 A

S2 B

https://www.geeksforgeeks.org/boyce-codd-normal-form-bcnf/
https://www.geeksforgeeks.org/boyce-codd-normal-form-bcnf/

Table R2

CID CNAME

C1 C

C2 D

When their cross-product is done it resulted in multivalued dependencies.

Table R1 X R2

SID SNAME CID CNAME

S1 A C1 C

S1 A C2 D

S2 B C1 C

S2 B C2 D

Multivalued dependencies (MVD) are:

 SID->->CID; SID->->CNAME; SNAME->->CNAME

6. Consider the following schema for OrderDatabase

SALESMAN (Salesman_id, Name, City, Commission)

CUSTOMER (Customer_id, Cust_Name, City, Grade,Salesman_id)

ORDERS (Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)

Write SQL queries for the following:

1. Count the customers with grades above Bangalore’s average.

2. Find the name and numbers of all salesmen who had more than one customer.

3. List all salesmen and indicate those who have and don’t have customers in

 their cities (Use UNION operation.)

4.Create a view that finds the salesman who has the customer with the highest

 order of a day.

5.Demonstrate the DELETE operation by removing salesman with id 1000.

All his orders must also be deleted.

Ans.

1. Count the customers with grades above Bangalore’s average

select grade,count(distinct c_id)from customer group by grade having grade>(select avg(grade) from customer where

city='Banglore');

2. Find the name and numbers of all salesman who had more than one customer.

select salesmanid,name from salesman S where(select count(*) from customer C where C.salesmanid=S.salesmanid)>1;

3. List all the salesman and indicate those who have and don’t have customers in their cities (Use UNION operation.)

select S.salesmanid,S.name,C.c_name,S.commission from salesman S,customer C where S.city=c.city union select

S.salesmanid,S.name,'No match',S.commission from salesman S where city not in(Select city from customer)order by 1 asc;

4. Create a view that finds the salesman who has the customer with the highest order of a day.

create view V_salesman as select O.order_date,S.salesmanid,S.name from salesman S,orders O where
S.salesmanid=O.salesmanid and O.purchase_amt=(Select max(purchase_amt) from orders C);

5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.

delete from customer where salesmanid=1000;

delete salesmanid=1000;from orders where salesmanid=1000;

delete from salesman where

