
USN

Internal Assessment Test 2 – February2024

Sub: Principles of Artificial Intelligence Sub
Code: 21AI54 Branch: AIML

Date: 06/02/24 Duration: 90
minutes

Max
Marks: 50 Sem/Sec: V - A OBE

Answer any FIVE FULL Questions MAR
KS CO RBT

USN

1a) Compare depth first search, iterative deepening depth first search and bi-
directional search. (3 x 2=6)

The properties of depth-first search depend strongly on whether the
graph Search or tree-search version is used. The graph search
version is complete, where as tree search version is not complete.

Both graph and tree versions are not optimal. Depth first tree search
may generate all of O(bm) nodes where m is the maximum depth of
any node

For a state space with branching factor b and maximum depth m,
the depth first search requires storage of O(bm) nodes.

DFS fails in infinite state space.

Iterative deepening DFS

Iterative deepening DFS finds the best depth limit. By gradually
increasing the limit -0,1,2……. until a goal is found – when depth d is
reached. The space complexity is O(bd)

The time complexity is O(bd) - same as breadth first search

Bidirectional Search

One forward search from initial state to goal state and one
backward search from goal state to initial state. The motivation is b
d/2+bd/2 is much less than O(bd/2). Bidirectional Search is complete.
Space complexity is O(bd). The search is optimal as well.

1b) State whether the following statement is true or false: 'Iterative deepening depth
first search has same asymptotic space complexity as breadth first search'. Justify your
answer. (4)

In iterative deepening states are generated multiple times. But in a
search tree with same branching factor, most nodes at the bottom
levels. Nodes at depth d are generated once and that at d-1 are
generated twice and so on and children of root are generated d
times. Number of nodes generated = (d) b+ (d-1) b²+.......+ (1)
bd=O(bd), same as that of BFS.

[6]

2

L2

L3

USN

2a) Explain A* Search and the conditions for optimality of informed search

strategies.(3+3=6)

A* is a best-first heuristic search. The heuristic function is defined as
f(n) =g(n0 + h(n) where g(n) is the cost to search node and h(n)
being the cost to reach from the node n to goal state.

The condition for optimality are admissibility and consistency.
h(n) should be in admissible heuristic - An Admissibility heuristic is
one that never overestimates the cost to reach the goal.

A heuristic h(n) is consistent, if for every nodes n and every node
successor node n' of n, generated by action a, the estimated cost of
reaching the goal from n, is no greater than the step cost of getting
to n’ plus the estimated cost of reaching the goal from n’.

h(n) <= c(n, a, n') + h(n)') This is a form of general triangular
inequality.

2b) Prove that that A* search is optimal.(2+2=4)

Proof of optimality of A*: Tree search version of A* is optimal if h(n)
is admissible, which graph search version is optimal, if h(n) is
consistent.

We establish that h(n) is consistent.

If h(n) is consistent the vales of f(n) along any path are non-
decreasing.

Proof: Suppose n' is a successor of n, then g(n') = g(n) + c(n, a, n')
for some action a.
f(n’) = g(n’) + h(n’) = g(n) + c(n,a,n’) + h(n’)
 ≥ g(n)+ h(n)=f(n)
The next step is that whenever A* selects a node n for expansion,
the optimal path to that node has been found.
Assume this is not the case, frontier then there would have to be
another node n' on the optimal path from the state node to n,
became f' is non decreasing along any path, n' would have lower &
cost than n, and would have been selected first.
From the preceding observation, it follows that the sequence of
nodes expanded using A* using Graph Search is in non-decreasing
order of them. hence their first node selected for expansion must be
an optimal solution.

2

L2

L3

USN

3) Explain strategies to generate admissible heuristics.(3x2 = 6)

A problem with fewer restrictions on the actions is relaxed problem:
State space graph of a relaxed problem is state space is a super
graph of the original state space -creates added edges. Therefore
any optimal solution in this original problem is by definition also a
solution in the relaxed problem. Derived heuristic obeys is triangular
inequality and is consistent.

Pattern Database : Admissible heuristic can be derived from the
solution cost of subproblem of a given problem. Store these exact
solution costs of every possible sub problem instance. Then we
compute an admissible heuristic hDB for each complete state
encountered during a search simply by looking up the corresponding
subproblem configuration in database. The database itself is
constructed by going back from the goal and recording the cost of
each new pattern encountered.
Learning heuristics from experience.
A heuristic function h(n) is supposed to estimate the cost of the
solution beginning from the state at node n. The agent could
construct such a function by learning from experience. Each
example consists of a state from the solution path and the actual
cost of the solution from that point. From these examples, a learning
algorithm can be used to construct a function h(n), that can predict
solution costs for other states that arise during search.

4a) Explain Hill Climbing Algorithm. What are the drawbacks of Hill Climbing
Algorithm? (3+3=6)

Algorithms like A* needs to store one or more paths in the memory.
If a path to goal does not matter, we might consider local search.
Local search algorithms operate using single current a single current
node and generally move only to neighbors.

Hill climbing algorithm - Steepest ascent is a loop that continually
moves in the direction of increasing value. It terminates when it
reaches a peak, where no neighbors has a higher value.

function HILL-CLIMBING (problem) return a state that is local max
current <- MAKENODE (problem.INITIAL STATE)
loop do
 neighbor <- a highest valued successor of current
 if neighbor.VALUE <= current.VALUE then return current.STATE
 current <- neighbor

[10] 2 L2

Drawback:
1) Get’s stuck at local maxima
2) Ridges result in a sequence of local maxima that is very difficult
for the greedy algorithm to navigate
3) The hill climbing algorithms will get stuck on a plateau.

4b) Write pseudo code for Simulated Annealing algorithm. (2)
Differentiate Simulated Annealing from Hill Climbing. (2)

function SIMULATED - ANNEALING (Problem, schedule) return A
Solution state
Inputs:
problem
schedule
current <- MAKE NODE (Problem. INITIAL-STATE)
for i = 1 to infinity do
 T <- schedule(t)
 if T = 0 then return current
 next <- a randomly selected successor of current
 Delta E <- next. VALUE - current VALUE
 if Delta E >0 then current <- next
 else current <- next only with probability e Delta E / T

Hill climbing algorithm never moves downward from the hill towards
a lower value and therefore is incomplete, because it gets stuck on
the local maxima. Simulated annealing allows the movement in
either direction.

[10] 2 L3

5) Map of Romania and the straight line distance from various cities to Bucharest
 is given below. Apply A* search algorithm and determine the optimal
 Route from Arad to Bucharest.

6) Define the following terms with respect to logic: (5 x 2 = 10)

(i)Relation 'satisfies':
Satisfies: If a sentence x is true in m, we say that m satisfies x. A
model is a mathematical abstraction, each of which fixes the truth
or the falsehood of every relevant sentence.

(ii)relation 'entailment' :
X entails B iff in every model in which X is true B is also true.
M(X) is the set of all models of xX entails B iff M(x) is a sub set of M(B)
(iii)Model checking :

Model checking is an inference technique in which to establish KB
entails x as all possible models are enumerated to check that x is
true in all models in which KB is true

(iv) Soundness of inference algorithms

An inference algorithm that derives only entiled sentences is called
sound.

(v) Completeness of inference algorithm
An inference algorithm is complete if it can drive any sentence that
is entitled.

[10] 2 L1

