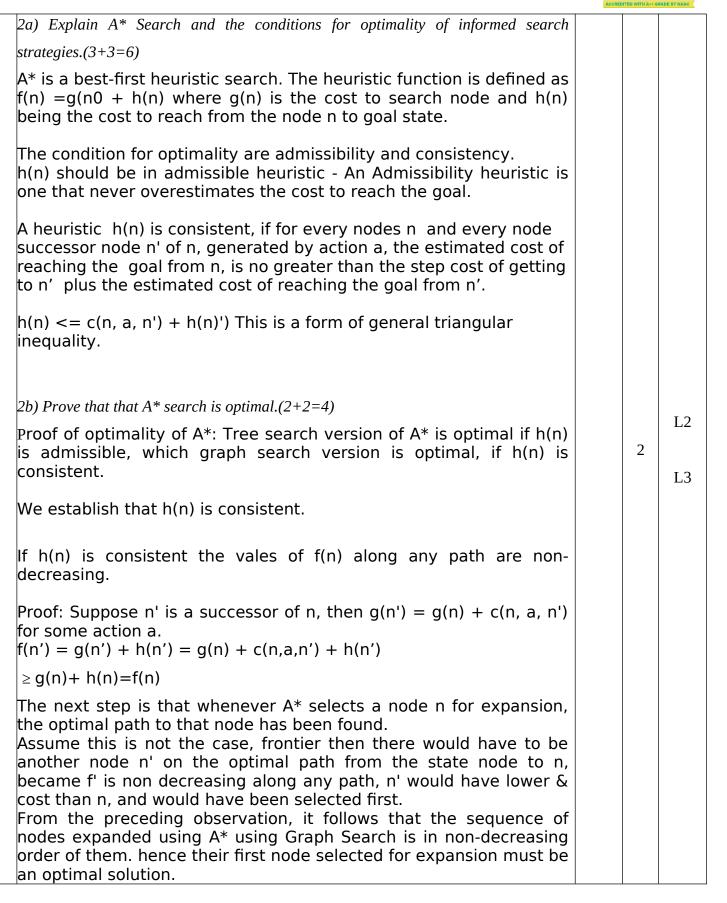
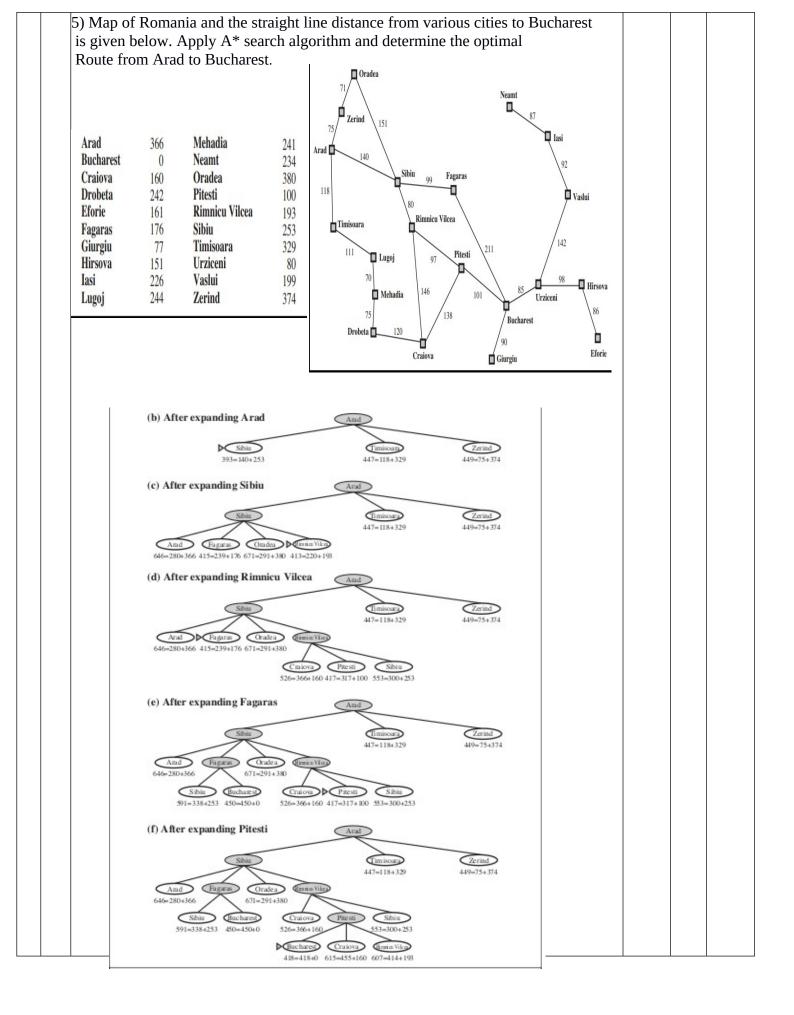


USN					

Internal Assessment Test 2 – February2024

Sub:	Principles	of Artificia	l Intelligenc	ce		Sub Code:	21AI54	Branch:	AIN	[L		
Date:	06/02/24	Duration:	90 minutes	Max Marks:	50	Sem/Sec:	,	V - A		0	BE	
		An	swer any F	IVE FULL Q	uestic	ons			MAR KS	со	RBT	


USIN


	[6]		
1a) Compare depth first search, iterative deepening depth first search and bi- directional search. (3 x 2=6)			
The properties of depth-first search depend strongly on whether the graph Search or tree-search version is used. The graph search version is complete, where as tree search version is not complete.			
Both graph and tree versions are not optimal. Depth first tree search may generate all of O(b ^m) nodes where m is the maximum depth of any node			L2
For a state space with branching factor b and maximum depth m, the depth first search requires storage of O(bm) nodes.			
DFS fails in infinite state space.			
Iterative deepening DFS			
Iterative deepening DFS finds the best depth limit. By gradually increasing the limit -0,1,2 until a goal is found – when depth d is reached. The space complexity is O(bd)		2	
The time complexity is $O(b^d)$ - same as breadth first search			
Bidirectional Search			
One forward search from initial state to goal state and one backward search from goal state to initial state. The motivation is b $d^{/2}+b^{d/2}$ is much less than O(b ^{d/2}). Bidirectional Search is complete. Space complexity is O(b ^d). The search is optimal as well.			
1b) State whether the following statement is true or false: 'Iterative deepening depth first search has same asymptotic space complexity as breadth first search'. Justify your answer. (4)			L3
In iterative deepening states are generated multiple times. But in a search tree with same branching factor, most nodes at the bottom levels. Nodes at depth d are generated once and that at d-1 are generated twice and so on and children of root are generated d times. Number of nodes generated = (d) b+ (d-1) b ² ++ (1) $b^d=O(b^d)$, same as that of BFS.			

USIN

Drawback: 1) Get's stuck at local maxima 2) Ridges result in a sequence of local maxima that is very difficul for the greedy algorithm to navigate 3) The hill climbing algorithms will get stuck on a plateau. 4b) Write pseudo code for Simulated Annealing algorithm. (2) Differentiate Simulated Annealing from Hill Climbing. (2) function SIMULATED - ANNEALING (Problem, schedule) return A Solution state Inputs: problem schedule current <- MAKE NODE (Problem. INITIAL-STATE) for i = 1 to infinity do T <- schedule(t) if T = 0 then return current next <- a randomly selected successor of current Delta E <- next. VALUE - current VALUE if Delta E >0 then current <- next else current <- next only with probability e Delta E/T Hill climbing algorithm never moves downward from the hill toward a lower value and therefore is incomplete, because it gets stuck on the local maxima. Simulated annealing allows the movement if either direction.	[10] 5 1	2	L3	
---	----------------	---	----	--

6) Define the following terms with respect to logic: $(5 \times 2 = 10)$			
(i)Relation 'satisfies': Satisfies: If a sentence x is true in m, we say that m <i>satisfies</i> x. A model is a mathematical abstraction, each of which fixes the truth or the falsehood of every relevant sentence.			
(ii)relation 'entailment' : X <i>entails</i> B iff in every model in which X is true B is also true.			
M(X) is the set of all models of x			
X entails B iff M(x) is a sub set of M(B)			
(iii)Model checking :	[10]	C	L1
Model checking is an inference technique in which to establish KB entails x as all possible models are enumerated to check that x is true in all models in which KB is true	[10]	2	LI
(iv) Soundness of inference algorithms			
An inference algorithm that derives only entiled sentences is called sound.			
(v) Completeness of inference algorithm An inference algorithm is complete if it can drive any sentence that is entitled.			
	 (i)Relation 'satisfies': Satisfies: If a sentence x is true in m, we say that m <i>satisfies</i> x. A model is a mathematical abstraction, each of which fixes the truth or the falsehood of every relevant sentence. (ii)relation 'entailment' : X <i>entails</i> B iff in every model in which X is true B is also true. M(X) is the set of all models of x X <i>entails</i> B iff M(x) is a sub set of M(B) (iii)Model checking : Model checking is an inference technique in which to establish KB entails x as all possible models are enumerated to check that x is true in all models in which KB is true (iv) Soundness of inference algorithms An inference algorithm that derives only entiled sentences is called sound. (v) Completeness of inference algorithm 	 (i)Relation 'satisfies': Satisfies: If a sentence x is true in m, we say that m <i>satisfies</i> x. A model is a mathematical abstraction, each of which fixes the truth or the falsehood of every relevant sentence. (ii)relation 'entailment' : X <i>entails</i> B iff in every model in which X is true B is also true. M(X) is the set of all models of x X <i>entails</i> B iff M(x) is a sub set of M(B) (iii)Model checking : Model checking is an inference technique in which to establish KB entails x as all possible models are enumerated to check that x is true in all models in which KB is true (iv) Soundness of inference algorithms An inference algorithm that derives only entiled sentences is called sound. (v) Completeness of inference algorithm An inference algorithm is complete if it can drive any sentence that 	 (i)Relation 'satisfies': Satisfies: If a sentence x is true in m, we say that m <i>satisfies</i> x. A model is a mathematical abstraction, each of which fixes the truth or the falsehood of every relevant sentence. (ii)relation 'entailment' : X <i>entails</i> B iff in every model in which X is true B is also true. M(X) is the set of all models of x X <i>entails</i> B iff M(x) is a sub set of M(B) (iii)Model checking : Model checking is an inference technique in which to establish KB entails x as all possible models are enumerated to check that x is true in all models in which KB is true (iv) Soundness of inference algorithms An inference algorithm that derives only entiled sentences is called sound. (v) Completeness of inference algorithm An inference algorithm is complete if it can drive any sentence that