USN

Internal Assessment Test 1 — June 2024 — Scheme of Valuation

Sub:

Software Engineering and Project Management Sub Code: | 21CS61

Branch

ISE

Date:

04/06/2024 |Duration: |90 min’s | Max Marks: | 50 | Sem/Sec: | VI/A,B & C

OBE

Answer any FIVE questions

MARKS

CLO

RBT

(a) Define software Engineering.

Definition — IEEE definition of software engineering.
(b) Briefly define the attributes of a good software?
List the attributes — 3

Brief one line explanation — 2

5

CLO1

L2

(a) What are the software myths? Define legacy software?

List the myths given in the textbook — 3
Definition of legacy software — 2

(b) Briefly define the properties of a well-engineered software?

Properties listed in the textbook — 2
Definition of the properties — 3

CLO1

L2

(a) Explain the waterfall model of the software development process with a neat
diagram.

Model diagram — 2
Explanation for the model — 3

(b) Describe the core advantages and unavoidable disadvantages.

Advantages — 3, Disadvantages — 2

CLO1

L2

(a) Briefly explain the requirement elicitation and analysis process.

Requirements elicitation process and explanation — 3
Analysis process with use case model — 2

(b) Explain the important differences between functional and non-functional
requirements.

Atleast 5 differences and suitable explanations — 5

CLO1

L2

(a) Explain prototype and V models for software development with suitable
diagrams.

Prototype Model — diagram — 1, explanation — 1.5
V Model — diagram — 1, explanation — 1.5

(b) Differentiate the above two models based on their core properties.

CLO1

L2

Differences — 5 of them and relate to core properties

(a) Explain software process framework with a neat diagram.

Software Process Framework — diagram 2 marks
Explanation for the framework — 2 marks

(b) Draw the use case diagram for the following case study:

A Modern Bazar Supermarket sells books and CDs using Online shopping. The
customer adds items to the shopping cart. The customer may remove items or go
to the checkout to make purchases at any time. The customer receives the
purchased items by choosing a payment method. A sales employee at modern
bazaar supermarket gets the order and purchase confirmation from the system
and sends the electronic order to the warchouse. The warechouse employee
updates the order status. The customer may check the order status.

Use Case diagram — atleast 6 use cases with appropriate actors. System has to be
represented in a rectangular box.

CLO2

USN

Internal Assessment Test 1 — June

2024 — Solution

Sub: | Software Engineering and Project Management Sub Code: | 21CS61 | Branch | ISE
Date: | 04/06/2024 |Duration: |90 min’s | Max Marks: | 50 | Sem/Sec: | VI/A,B & C OBE
Answer any FIVE questions MARKS |CLO [RBT
(a) Define software Engineering. 5
Definition — IEEE definition of software engineering.
Software Engineering: (1) The application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of
| software; that is, the application of engineering to software. (2) The study of cLoll 1o

approaches as in (1).
(b) Briefly define the attributes of a good software?

List the attributes — 3
Brief one line explanation — 2

Network intensiveness. A WebApp resides on a network and must serve
the needs of a diverse community of clients. The network may enable world-
wide access and communication (i.e., the Internet) or more limited access
and communication (e.g., a corporate Intranet).

Concurrency. A large number of users may access the WebApp at one
time. In many cases, the patterns of usage among end users will vary greatly.

Unpredictable load. The number of users of the WebApp may vary by
orders of magnitude from day to day. One hundred users may show up on
Monday; 10,000 may use the system on Thursday.

Performance. If a WebApp user must wait too long (for access, for server-
side processing, for client-side formatting and display), he or she may decide
to go elsewhere.

Availability. Although expectation of 100 percent availability is unreason-
able, users of popular WebApps often demand access on a 24/7/365 basis.
Users in Australia or Asia might demand access during times when tradi-
tional domestic software applications in North America might be taken
off-line for maintenance.

Data driven. The primary function of many WebApps is to use hypermedia
to present text, graphics, audio, and video content to the end user. In addi-
tion, WebApps are commonly used to access information that exists on data-
bases that are not an integral part of the Web-based environment (e.g.,
e-commerce or financial applications).

Content sensitive. The quality and aesthetic nature of content remains an
important determinant of the quality of a WebApp.

Continuous evolution. Unlike conventional application software that
evolves over a series of planned, chronologically spaced releases, Web appli-
cations evolve continuously. It is not unusual for some WebApps (specifically,
their content) to be updated on a minute-by-minute schedule or for content
to be independently computed for each request.

Immediacy. Although immediacy—the compelling need to get software to
market quickly—is a characteristic of many application domains, WebApps
often exhibit a time-to-market that can be a matter of a few days or weeks.”

Security. Because WebApps are available via network access, it is difficult,
if not impossible, to limit the population of end users who may access the
application. In order to protect sensitive content and provide secure modes
of data transmission, strong security measures must be implemented
throughout the infrastructure that supports a WebApp and within the appli-
cation itself.

Aesthetics. An undeniable part of the appeal of a WebApp is its look and
feel. When an application has been designed to market or sell products or
ideas, aesthetics may have as much to do with success as technical design.

(a) What are the software myths? Define legacy software?

List the myths given in the textbook — 3
Definition of legacy software — 2

CLO1

L2

Myth:

Reality:

Myth:

Reality:

Myth:

Reality:

Myth:

Reality:

Myth:

Reality:

We already have a book that's full of standards and procedures for
building software. Won't that provide my people with everything they
need to know?

The book of standards may very well exist, but is it used? Are soft-
ware practitioners aware of its existence? Does it reflect modern
software engineering practice? Is it complete? Is it adaptable? Is it
streamlined to improve time-to-delivery while still maintaining a
focus on quality? In many cases, the answer to all of these questions:
is “no.”

If we get behind schedule, we can add more programmers and catch up
(sometimes called the “Mongolian horde” concept).

Software development is not a mechanistic process like manufactur
ing. In the words of Brooks [Bro95]: “adding people to a late soft-
ware project makes it later.” At first, this statement may seem
counterintuitive. However, as new people are added, people who
were working must spend time educating the newcomers, thereby
reducing the amount of time spent on productive development
effort. People can be added but only in a planned and well-
coordinated manner.

If I decide to outsource the software project to a third party, I can just
relax and let that firm build it.

If an organization does not understand how to manage and control
software projects internally, it will invariably struggle when it out-

sources software projects.
A general statement of objectives is sufficient to begin writing

programs—we can fill in the details later.

Although a comprehensive and stable statement of requirements is
not always possible, an ambiguous “statement of objectives” is a

recipe for disaster. Unambiguous requirements (usually derived
iteratively) are developed only through effective and continuous

communication between customer and developer.

Software requirements continually change, but change can be easily
accommodated because software is flexible.

It is true that software requirements change, but the impact of
change varies with the time at which it is introduced. When require-
ments changes are requested early (before design or code has been
started), the cost impact is relatively small.' However, as time
passes, the cost impact grows rapidly—resources have been commit-
ted, a design framework has been established, and change can
cause upheaval that requires additional resources and major design
modification.

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that “the sooner you begin ‘writing code,’ the
longer it'll take you to get done.” Industry data indicate that between
60 and 80 percent of all effort expended on software will be ex-
pended after it is delivered to the customer for the first time.

Myth: Until I get the program “running” I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms
can be applied from the inception of a project—the technical review.
Software reviews (described in Chapter 15) are a “quality filter” that
have been found to be more effective than testing for finding certain
classes of software defects.

Myth: The only deliverable work product for a successful project is the working
program.

Reality: A working program is only one part of a software configuration that
includes many elements. A variety of work products (e.g., models,
documents, plans) provide a foundation for successful engineering
and, more important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary
documentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about
creating a quality product. Better quality leads to reduced rework.
And reduced rework results in faster delivery times.

Hundreds of thousands of computer programs fall into one of the seven broad
application domains discussed in the preceding subsection. Some of these are state-
of-the-art software—just released to individuals, industry, and government. But
other programs are older, in some cases much older.

These older programs—often referred to as legacy software—have been the focus
of continuous attention and concern since the 1960s.

(b) Briefly define the properties of a well-engineered software?

Properties listed in the textbook — 2
Definition of the properties — 3

1. Maintainability — Software maintainability is defined as the ease of finding
and correcting errors in the software.

2. Dependability — It is often defined as the extent to which a program can be
expected to perform intended functions which required precision over a given
period of time.

3. Efficiency — Efficiency is the extent to which software uses minimum
hardware resources to perform its functions.

4. Usability — This is the extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use.

5. Portability — It is defined as the ease of transporting a given set of software to
a new hardware and/or operating system environment.

6. Availability of Documentation — System documentation includes all of the
documents describing the implementation of the system from the requirements
specification to the final acceptance test plan.

(a) Explain the waterfall model of the software development process with a neat
diagram.

Model diagram — 2

m The waterfall modsl

= Communication
st wkohcts 7| Planning L. Modeling
requireenants gatharing - | Construction
scheduling anciysis T =] Deployment |-
nacking dazign e Gaivary
vk

Explanation for the model — 3

The waterfall model, sometimes called the classic life cycle, suggests a systematic,
sequential approach® to software development that begins with customer specifica-
tion of requirements and progresses through planning, modeling, construction, and
deployment, culminating in ongoing support of the completed software (Figure 2.3).

A varlation in the representation of the waterfall model is called the V-model.
Represented In Figure 2.4, the V-model [Buc%9] depicts the relationship of quality
assurance actions to the actions associated with communication, modeling, and
early construction activities. As a software team moves down the left side of the v,
basic problem requirements are refined into progressively more detalled and techni-
cal representations of the problem and its solution. Once code has been generated,
the team moves up the right side of the V, essentially performing a serles of tests
(quality assurance actions) that validate each of the models created as the team
moved down the left side.” In reality, there is no fundamental difference between the
classic life cycle and the V-model. The V-model provides a way of visualizing how
verification and validation actions are applied to earlier engineering work.

The waterfall model is the oldest paradigm for software engineering. However,
over the past three decades, criticism of this process model has caused even ardent
supporters to question its efficacy [Han95]. Among the problems that are sometimes
encountered when the waterfall model is applied are-

1. Real projects rarely follow the sequential flow that the model proposes.
Although the linear model can accommodate iteration, it does so indirectly.
As a result, changes can cause confusion as the project team proceeds.

CLO1

L2

2. Itisoften difficult for the customer to state all requirements explicitly. The
waterfall model requires this and has difficulty accommodating the natural
uncertainty that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will
not be avallable until late in the project ime span. A major blunder, if unde-
tected until the working program Is reviewed, can be disastrous.

In an Interesting analysis of actual projects, Bradac [Bra94] found that the linear
nature of the classic life cycle leads to “blocking states” in which some project team
members must wait for other members of the team to complete dependent tasks. In
fact, the time spent waiting can exceed the time spent on productive work! The
blocking states tend to be more prevalent at the beginning and end of a linear
sequential process.

Today, software work Is fast-paced and subject to a never-ending stream of
changes (to features, functions, and information content). The waterfall model is
often inappropriate for such work. However, it can serve as a useful process model
In situations where requirements are fixed and work Is to proceed to completion in
a linear manner.

(b) Describe the core advantages and unavoidable disadvantages.
Advantages — 3, Disadvantages — 2

Advantages:

1. A systematic model can bring out a complete and stable software.
2. Can definitely produce a high-quality software.

3. Improve the life span of the software.

Disadvantages:

1. Real projects rarely follow the sequential flow that the model proposes.
Although the linear model can accommodate iteration, it does so indirectly.
As a result, changes can cause confusion as the project team proceeds.

2. Itisoften difficult for the customer to state all requirements explicitly. The
waterfall model requires this and has difficulty accommodating the natural
uncertainty that exists at the beginning of many projects.

3. The customer must have patience. A working version of the program(s) will

not be available until late in the project ime span. A major blunder, if unde- -
tected until the working program Is reviewed, can be disastrous.

(a) Briefly explain the requirement elicitation and analysis process.

Requirements elicitation process and explanation — 3
Analysis process with use case model — 2

« Meetings are conducted and attended by both software engineers and other
stakeholders.

» Rules for preparation and participation are established.

« An agenda is suggested that is formal enough to cover all important points
but informal enough to encourage the free flow of ideas.

« A *facilitator” (can be a customer, a developer, or an outsider) controls the
meeting.

« A “definition mechanism” (can be work sheets, flip charts, or wall stickers or
an electronic bulletin board, chat room, or virtual forum) is used.

CLO1

L2

(b) Explain the important differences between functional and non-functional

requirements.

Atleast 5 differences and suitable explanations — 5

Functional Requirements

Non Functional Requirements

A functional requirement defines a
system or its component.

A non-functional requirement de-
fines the quality attribute of a soft-
ware system.

It specifies “What should the software
system do?”

It places constraints on “How
should the software system fulfill
the functional requirements?”

Functional requirement is specified by
User.

Non-functional requirement is
specified by technical peoples e.g.
Architect, Technical leaders and
software developers.

It is mandatory.

It is not mandatory.

It is captured in use case.

It is captured as a quality attribute.

Defined at a component level.

Applied to a system as a whole.

Helps you verify the functionality of
the software.

Helps you to verify the perfor-
mance of the software.

Functional Testing like System, Inte-
gration, End to End, API testing, etc
are done.

Non-Functional Testing like Perfor-
mance, Stress, Usability, Security
testing, etc are done.

Usually easy to define.

Usually more difficult to define.

(a) Explain prototype and V models for software development with suitable

diagrams.

Prototype Model — diagram — 1, explanation — 1.5

V Model — diagram — 1, explanation — 1.5

Prototype Model:

CLO1

L2

Quick plan

Communicofion T \
Mcdalin

Guick dasign
Deploymant

Delivery c

3 F;L:c: _‘cn:r.r/:n:r
=
profotypa

V Model:
Requirements
modeling |
\
Architectural B
design
‘\

.
Component L Integration
design tasting

Code o Unit
generation fasting

Exacutable
software

(b) Differentiate the above two models based on their core properties.
Differences — 5 of them and relate to core properties

Differences:

1. Waterfall model is slow in delivering the software compared to the
prototyping model.

2. ...

(a) Explain software process framework with a neat diagram.

Software Process Framework — diagram 2 marks
Explanation for the framework — 2 marks

CLO2

L3

Software process

Process framework

Umbrella activities

framework activity # 1
software engineering action #1.1

work fasks

work pfodum

quality assurance points
project milestones

Task sets

software engineering action #1.k

work fasks

work products

quality assurance points
project miasiones

Task sets

framework activity # n
software engineering action #n.1

work tasks

Task sets work producss

gualky csurosce points
project milastones

software engineering action #n.m

work tasks

work products

gqualty cssurosce points
project milastones

Task sets

(b) Draw the use case diagram for the following case study:

A Modern Bazar Supermarket sells books and CDs using Online shopping. The
customer adds items to the shopping cart. The customer may remove items or go
to the checkout to make purchases at any time. The customer receives the
purchased items by choosing a payment method. A sales employee at modern
bazaar supermarket gets the order and purchase confirmation from the system
and sends the electronic order to the warechouse. The warehouse employee
updates the order status. The customer may check the order status.

Use Case diagram — atleast 6 use cases with appropriate actors. System has to be
represented in a rectangular box.

Online Shopping System

C I
A e

Customer

