
USN

Internal Assessment Test I – June-2024

Sub: FULL STACK DEVELOPMENT Sub
Code: 21CS62 Branch: CSE

Date: 03/06/24 Duration: 90 mins Max
Marks: 50 Sem/Sec

: VI B&C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1.
a) Define a web framework and explain the purpose of using one in web
development. [5] CO1 L1

b) Discuss common types of errors encountered in Django web development and
their causes. [5] CO1 L2

2 a) What are wildcard patterns in URL routing, and how are they used in Django?
Give an example.

[5] CO1 L2

b) What is virtual environment in Django. Why it is used. Write

steps/commands for the following (in Ubuntu)

● Install /activate virtual environment.

● Install Django, create project, create application and to run server.

[5] CO1 L2

3
a) Explain the role of Django's template system in web development. Write a
Django view function that renders a template with context data, and provide the
corresponding template code that displays the context data using Django's template
language.

[5] CO3 L3

b) Create a DJango application that will display the table of given numbers
mentioned in the picture below. [5] CO1 L3

4

a) Discuss three commonly used template tags and three commonly used template
filters in Django. Provide examples of how each tag and filter is used in a Django
template.

[5] CO3 L2,L3

b) Describe the concept of template inheritance in Django. Create a base template
with a header and footer, and then create a child template that extends this base
template to include a content block.

[5] CO3 L2,L3

5
a) How do you define a model in Django? Write a Django model class Book with
fields title, author, published_date, and price. Explain the significance of each field
type used in the model.

[5] CO2 L2,L3

b) Develop a Django app that displays a list of subject codes and subject names of
any semester in tabular format. [5] CO3 L2,L3

6
Demonstrate how to perform the following CRUD (Create, Read, Update, Delete)
operations using python shell:

● Create a model name Employee.
● Insert 3 employees names, emp ids, salaries.
● Retrieve all Employee records from the database.
● Update the Salary of a specific employee.
● Delete a specific employee record from the database.

Provide code snippets for each operation.

[10] CO2 L3

CI CCI HOD

USN

Internal Assessment Test I – June-2024

Sub: FULL STACK DEVELOPMENT Sub
Code: 21CS62 Branch: CSE

Date: 03/06/24 Duration: 90 mins Max
Marks: 50 Sem/Sec

: VI B&C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1.
a) Define a web framework and explain the purpose of using one in web
development.
Solution:

A web framework is a software framework designed to support the
development of web applications, providing developers with pre-built
components, libraries, and tools to streamline the process.

The purpose of using a web framework is to simplify and standardize web
development tasks, such as handling HTTP requests, managing databases,
and generating HTML responses. It promotes code reuse, maintainability,
and scalability by following established patterns and best practices.

[5] CO1 L1

b) Discuss common types of errors encountered in Django web development and
their causes.
Solution:

● Common errors in Django web development include:
● HTTP 404 (Page Not Found) errors: Caused by missing or

misconfigured URL patterns.
● HTTP 500 (Internal Server Error) errors: Caused by

server-side issues such as misconfigured settings, database
connection problems, or unhandled exceptions in views.

● Database-related errors: Caused by incorrect database
queries, schema mismatches, or database connection
issues.

● Form validation errors: Caused by invalid user input or
misconfigured form validation logic.

● These errors can occur due to misconfiguration, programming
mistakes, data inconsistencies, or environmental issues.

[5] CO1 L2

2 a) What are wildcard patterns in URL routing, and how are they used in Django?
Give an example.

Solution:

[5] CO1 L2

Wildcard Patterns in Django

In Django, wildcard patterns can be created using both regular expressions
and path converters. These allow you to capture parts of the URL and pass
them as arguments to your view functions.

Path Converters (Django 2.0+)

Path converters are a simpler way to define URL patterns compared to
regular expressions. They allow you to specify the type of variable expected in
the URL and automatically convert it. Here are some common path
converters:

● <str:variable>: Matches any non-empty string, excluding the
path separator (/).

● <int:variable>: Matches an integer.
● <slug:variable>: Matches a slug (letters, numbers, underscores,

and hyphens).

Example:

from django.urls import re_path

from . import views

urlpatterns = [

re_path(r'^article/(?P<id>\d+)/(?P<title>[\w-]+)/$',
views.article_detail, name='article_detail'),

]

b) What is virtual environment in Django. Why it is used. Write

steps/commands for the following (in Ubuntu)

● Install /activate virtual environment.

● Install Django, create project, create application and to run server.

Solution:

A virtual environment in Django is an isolated workspace that allows

developers to manage dependencies and packages specific to a Django project

without affecting the global Python environment. This isolation ensures that

each project can maintain its own versions of libraries and dependencies,

preventing conflicts and compatibility issues with other projects. Virtual

[5] CO1 L2

environments help create a consistent development setup across different

machines and team members, making it easier to manage project-specific

dependencies and avoiding potential issues arising from system-wide package

installations.

need: The need for a virtual environment in Django (and Python development

in general) arises primarily from the requirement to manage project-specific

dependencies and avoid conflicts. Each Django project might depend on

different versions of libraries or packages, and installing these globally can lead

to version conflicts and unpredictable behavior across projects. Virtual

environments create an isolated environment for each project, allowing

developers to install and manage dependencies independently. This isolation

ensures consistency, makes it easier to replicate development environments

across different machines, facilitates better collaboration among team members,

and simplifies dependency management and deployment. Overall, virtual

environments contribute to more reliable and maintainable development

practices.

● Install /activate virtual environment: python-m venv env1

● command of Install Django, create project: pip install django

django-admin startproject ProjectName

● command of create application and to run server: py manage.py

startapp appName

3
a) Explain the role of Django's template system in web development. Write a
Django view function that renders a template with context data, and provide the
corresponding template code that displays the context data using Django's template
language.
Solution:
Django's template system plays a crucial role in web development by separating the
presentation layer from the business logic. It allows developers to define HTML
templates that can dynamically render content based on the context provided by
views. This system supports template inheritance, enabling the reuse of common
structures and components, which promotes DRY (Don't Repeat Yourself)
principles. Additionally, Django templates offer a rich set of built-in tags and filters
for manipulating data and controlling the presentation logic directly within the
templates. This separation of concerns enhances code maintainability, readability,
and makes it easier for developers and designers to collaborate on the frontend and
backend aspects of web applications.

Example:

views.py
from django.shortcuts import render

def example_view(request):
context = {

[5] CO3 L3

'title': 'Welcome to My Website',
'description': 'This is an example description.',
'items': ['Item 1', 'Item 2', 'Item 3'],

}
return render(request, 'example_template.html', context)

<!-- example_template.html -->
<!DOCTYPE html>
<html>
<head>
<title>{{ title }}</title>

</head>
<body>
<h1>{{ title }}</h1>
<p>{{ description }}</p>

{% for item in items %}
{{ item }}

{% endfor %}

</body>
</html>

b) Create a DJango application that will display the table of given numbers
mentioned in the picture below.

Solution:
Views.py
from datetime import date
from django.http import HttpResponse
from django.shortcuts import render
from django.template import Context, Template
def create_table_of_squares(request,s,n):
result=""
for i in range(1,n+1):
result+="<p>"+str(s)+"*"+str(i)+"="+str((s*i))+"</p>"
return HttpResponse(result)

[5] CO1 L3

URLS.py
from django.contrib import admin
from django.urls import path, re_path
from ap2.views import create_table_of_squares
urlpatterns = [
path('admin/', admin.site.urls),
path('cts/<int:s>/<int:n>', create_table_of_squares),

]

4

a) Discuss three commonly used template tags and three commonly used template
filters in Django. Provide examples of how each tag and filter is used in a Django
template.

Solution:

Commonly Used Template Tags in Django:
1. {% for %}

The {% for %} tag is used to loop over a sequence, such as a list or a
queryset. It's similar to a for loop in Python and allows you to iterate over
items in a context variable.

{% for item in items %}
{{ item }}

{% endfor %}

2. {% if %}

The {% if %} tag is used to perform conditional statements within
templates. It allows you to display content based on whether a condition is
true or false.

{% if user.is_authenticated %}

<p>Welcome, {{ user.username }}!</p>

{% else %}

<p>Please log in.</p>

{% endif %}

[5] CO3 L2,L3

3. {% block %} and {% extends %}

The {% block %} tag is used in conjunction with {% extends %}
for template inheritance. {% block %} defines a block of content that
child templates can override, while {% extends %} is used to inherit
the layout of a base template.

<!-- base.html -->

<!DOCTYPE html>

<html>

<head>

<title>{% block title %}My Website{% endblock %}</title>

</head>

<body>

{% block content %}{% endblock %}

</body>

</html>

<!-- child.html -->

{% extends "base.html" %}

{% block title %}

Child Page Title

{% endblock %}

{% block content %}

<p>This is the child page content.</p>

{% endblock %}

Commonly Used Template Filters in Django

1. length

The length filter returns the number of items in a list or
characters in a string. It's useful for displaying counts or
validating lengths.

<p>This list has {{ items|length }} items.</p>

2. default

The default filter provides a fallback value if the variable is
not defined or is empty. It's useful for ensuring that templates
display meaningful content even when some data might be
missing.

<p>{{ user.profile.bio|default:"This user has no bio." }}</p>

3. upper:

Keep the data in upper letters.

{{str| upper}}

b) Describe the concept of template inheritance in Django. Create a base template
with a header and footer, and then create a child template that extends this base
template to include a content block.

Solution:
Template inheritance in Django allows you to create a base template that contains
common elements such as headers, footers, and navigation bars. You can then
create child templates that inherit from the base template and override specific
blocks to insert unique content. This approach promotes code reuse and a
consistent layout across your web application.

Step 1: Create the Base Template

First, create a base template that includes a header and footer. This template
will define blocks that child templates can override.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>{% block title %}My Site{% endblock %}</title>
<link rel="stylesheet" href="{% static 'css/styles.css' %}">

</head>
<body>
<header>
<h1>Welcome to My Site</h1>
<nav>

Home
About
Contact

[5] CO3 L2,L3

</nav>

</header>

<main>
{% block content %}
<!-- Default content can go here if needed -->
{% endblock %}

</main>

<footer>
<p>© 2024 My Site. All rights reserved.</p>

</footer>
</body>
</html>

Step 2: Create a Child Template

Next, create a child template that extends the base template. This template will
override the content block to include specific content.

{% extends "base.html" %}

{% block title %}Home Page{% endblock %}

{% block content %}
<h2>Home Page Content</h2>
<p>Welcome to the home page of my site. Here is some introductory content.</p>
{% endblock %}

Usage in Views

To render these templates in your Django views, you would use the render
function. For example:

from django.shortcuts import render

def home_view(request):
return render(request, 'child.html')

5
a) How do you define a model in Django? Write a Django model class Book with
fields title, author, published_date, and price. Explain the significance of each field
type used in the model.

Solution:

To define a model in Django, you create a class in models.py that inherits from
models.Model. Each attribute of the class represents a database field.
from django.db import models

class Book(models.Model):
title = models.CharField(max_length=200) # Title of the book

[5] CO2 L2,L3

author = models.CharField(max_length=100) # Author's name
published_date = models.DateField() # Date of publication
price = models.DecimalField(max_digits=10, decimal_places=2) # Price of the

book

Field Types Explained

● CharField: Used for short text fields. max_length specifies the
maximum number of characters.

○ title: max_length=200
○ author: max_length=100

● DateField: Used for date values (e.g., published_date).
● DecimalField: Used for precise decimal numbers.

○ max_digits=10: Total number of digits.
○ decimal_places=2: Number of digits after the decimal

point.
○ price: Suitable for storing prices.

b) Develop a Django app that displays a list of subject codes and subject names of
any semester in tabular format.

Solution:

Views.py

from datetime import date
from django.http import HttpResponse
from django.shortcuts import render
from django.template import Context, Template
def list_of_subjects(request):
s1={"scode":"21CS51","sname":"cn"}
s2={"scode":"21CS52","sname":"ATc"}
s3={"scode":"21CS53","sname":"DbMS"}
s4={"scode":"21AI54","sname":"PAI"}
l=list()
l=[s1,s2,s3,s4]

[5] CO3 L2,L3

return render(request,'list_of_subjects.html',{"l":l})

URLS.py

from django.contrib import admin
from django.urls import path, re_path
urlpatterns = [
path('list_of_subjects/', list_of_subjects),
]

Template file: list_of_subjects.html

<html>
<body>
<table border>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
</tr>
{% for subject in l %}
{% if forloop.counter|divisibleby:"2" %}
<tr>
<td style="background-color: lightgreen;">{{ subject.scode }}</td>
<td style="background-color: lightgreen;">{{ subject.sname|upper

}}</td>
</tr>
{% else %}
<tr>
<td>{{ subject.scode }}</td>
<td>{{ subject.sname|upper }}</td>
</tr>
{% endif %}
{% endfor %}
</table>
</body>
</html>

6
Demonstrate how to perform the following CRUD (Create, Read, Update, Delete)
operations using python shell:

● Create a model name Employee.
● Insert 3 employees names, emp ids, salaries.
● Retrieve all Employee records from the database.
● Update the Salary of a specific employee.
● Delete a specific employee record from the database.

Provide code snippets for each operation.

Solution:

1. Create class Employee in models.py
class Employee(models.Model):

name=models.CharField(max_length=100)
id=models.IntegerField()
salary=models.IntegerField()

2. obj1 = Employee(name = ‘A’, id = 101, salary = 20000)
obj2 = Employee(name = ‘B’, id = 102, salary = 250000)
obj3 = Employee(name = ‘C’, id = 103, salary = 150000)

list = [obj1, obj2,obj3]
for i in list:

i.save()
3. Employee.objects.all().values()

4. Update: Update the salary of a specific employee

Retrieve the employee
employee_to_update = Employee.objects.get(id=102)

Update the salary
employee_to_update.salary = 65000.00
employee_to_update.save()

Verify the update
updated_employee = Employee.objects.get(id=102)
print(updated_employee.name, updated_employee.salary)

5. Delete: Delete a specific employee record

Retrieve the employee
employee_to_delete = Employee.objects.get(id=103)

Delete the employee
employee_to_delete.delete()

[10] CO2 L3

Verify deletion
remaining_employees = Employee.objects.all()
for employee in remaining_employees:

print(employee.name, employee.id, employee.salary)

