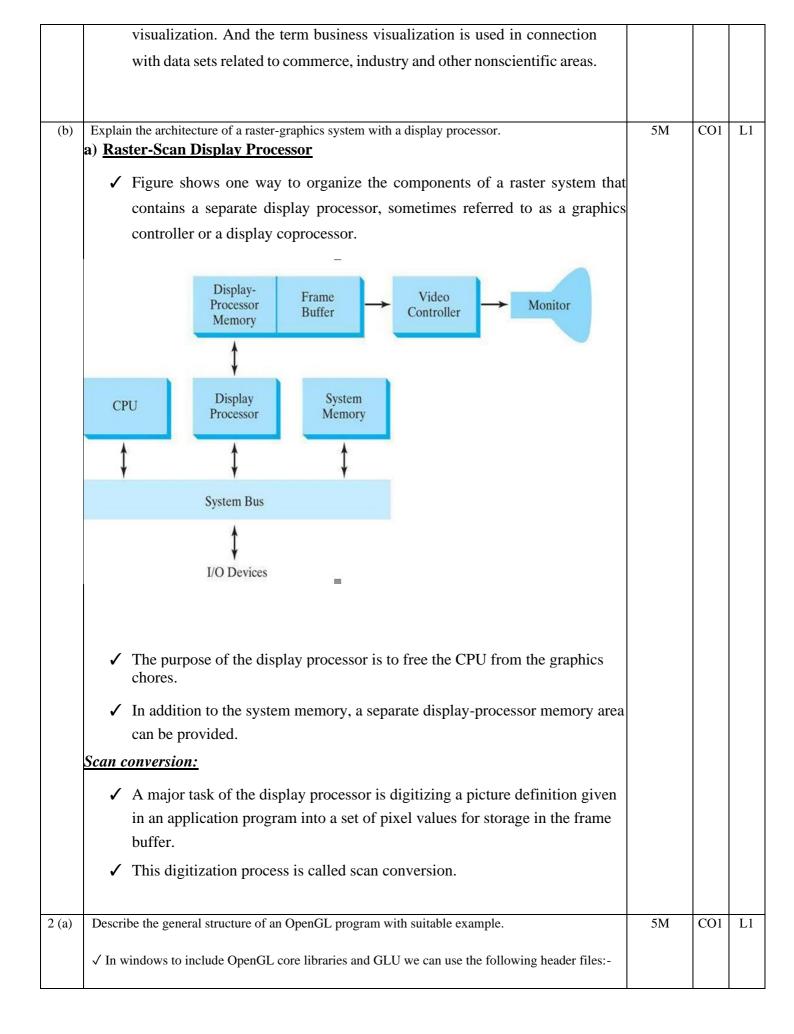
TICAL					
USN					
0.011					

C 1	Comments C				ment Test I		1	D	h	COL		
Sub:	-	aphics and Funda		-		Sub Code:	21CS63	Brai	nch:	CSE	1	
Date:	04.06.2024		90 mins	Max M		Sem/Sec:	6.	A,B,C			OE	
			wer any FI						MAF			RBT
1 (a)	List the applic	ations of compute	er graphics	and explai	in any three i	in detail.			5]	М	CO1	L1
(b)	Explain the ar	chitecture of a ras	ter-graphic	es system v	vith a display	processor.			51	M	CO1	L1
2 (a)	Describe the g	general structure o	f an Open	GL program	m with suitab	ole example.			51	M	CO1	L1
(b)	diagrams.	GL_LINES, GL_I					snippets and ne	at	51	M	CO1	L2
3 (a)	With a neat dia	ıgram, explain Bro	esenham's	line drawi	ng algorithm	for slope >1			51	М	CO1	L2
(b)		cenerated by Bres 2) to (10,7). Plot			g algorithm	for k , p_k and	$d(x_{k+1}, y_{k+1})$ fo	r the	51	M	CO1	L3
4 (a)	-	neat diagrams, ro matrix thereof.	tation abou	t a pivot p	point and the	derivation fo	or the composite	e 3x3	51	M	CO2	L2
	the line and coo	ne from (6,2) to (ordinates. Show the coordinate orig	ne 3x3 hom				•		51	M	CO2	L3
5 (a)	Explain 3D R	otations transform	nation with	relevant tr	cansformation	n matrix.			5]	М	CO 2	L2
(b)	Design transfector	ormation matrix t	o rotate a 3	3D object a	about an axis	s that is not p	parallel to one o	of the	5]	М	CO2	L2
6	-	GL program usin Write the full op m left.		-		-			10	М	CO2	L3
	200				-only plo	t the beake	r (not the					
	175				-	outline in	0					
					-shade 't within	olue' for the	e polygon					
	125				- set bacl 'grey'.	kground co	lor to					
	75											
	50											
	25											
	25	50 75 100	125 150	175 20	00							

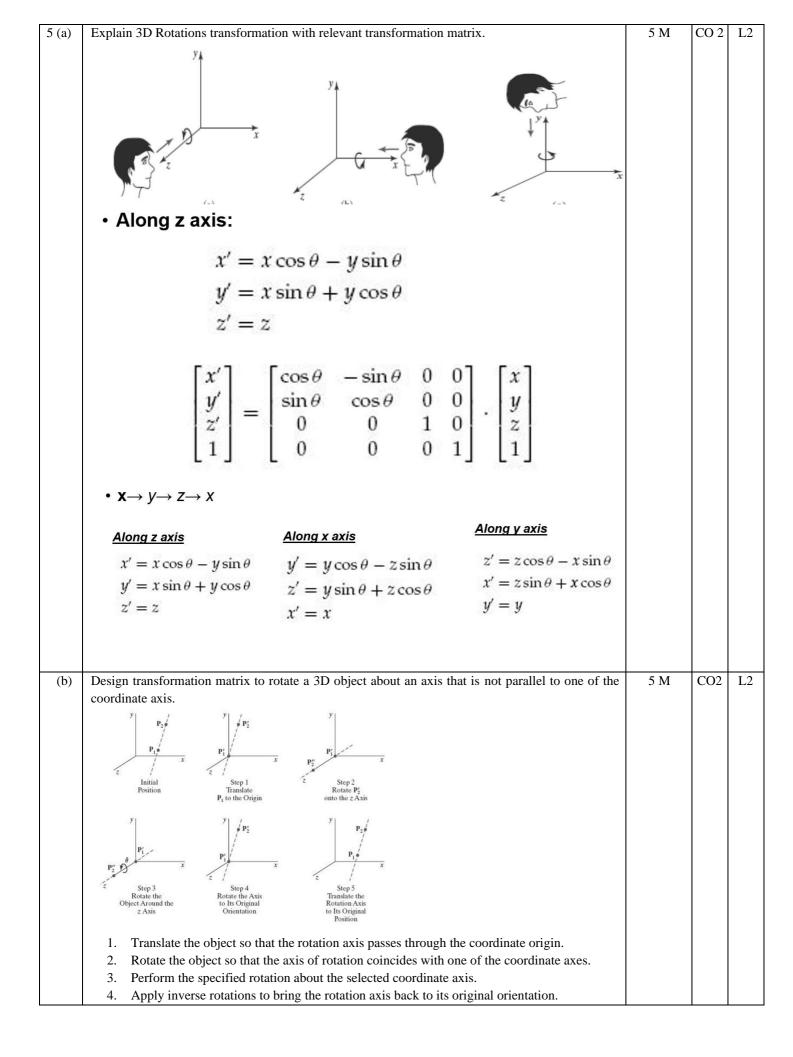

Internal Assessment Test 1 – June 2024

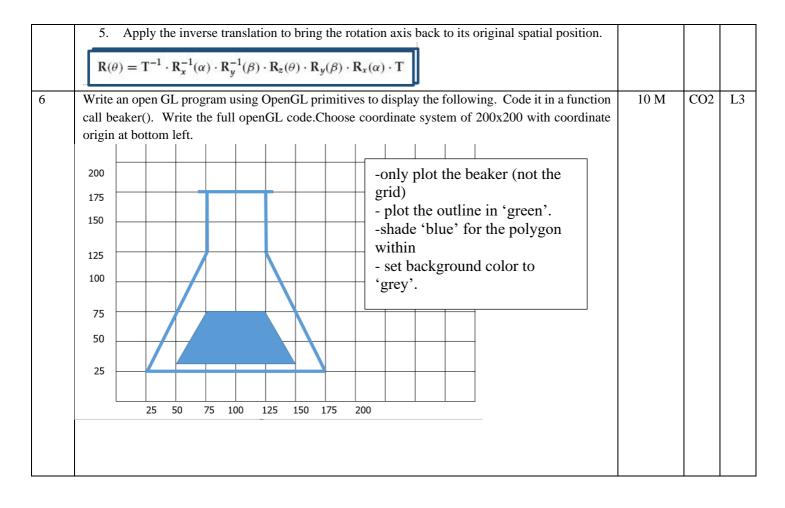
CCI

25 YEARS *
CMDIT
🖞 🥌 CMRIT
* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A+ GRADE BY NAAC

Internal Assessment Test 1 – June 2024 Solution

Sub:	Comp	uter Gra	phics and Fund	amentals of	Image Processin		Sub Code:	21CS63	Brancl	h: CSE		
Date:	-	5.2024	Duration:	90 mins	Max Marks:	g 50	Sub Code: Sem/Sec:		A,B,C		OF	BE
Eate.	0 1.00		E urution.		olution	1.50	Sem See.	0 F		MARKS		RBT
1 (a)		phs an F C S S C S S T F T C C T	<u>d Charts</u> An early appl lata graphs v still one of th Graphs & cl statistical, m research rep publications. Typically exacharts, surfac	iter graphics lication for isually plo e most com narts are of athematics orts, man amples of e graphs, between m	olution and explain any computer gra tted on a char nmon graphics commonly us al, engineerin agerial sumr data plots are contour plots nultiple param imensional sp	aphics cacter s appl ed to ng an maries e line s and eters	s is the disp printer. Da ication. summariz nd econon s and oth graphs, ba other disp	ata plotting is the functional, nic data for er types of ar charts, pie lays showing		JARKS 5 M	CO	L1
	\checkmark	<u>Com</u>	puter-Aided	<u>Design</u>								
	1	engin CAD, design	neering and a computer-ai	architectur ded design e now rout	or CADD, co	ompu	ter-aided dr	afting and				
			es are constru		nmunications repeated place							
		anima		vire-frame	CAD applica shapes are us system.			1				
	c. Data	ı Visuc	alizations									
	1	medic	cal data sets	and proce	entations for esses is anoth is generally	ner fa	irly new a	pplication of	2			




<pre>#include <windows.h> //precedes other header files for including Microsoft windows ver of OpenGL libraries</windows.h></pre>		
<pre>#include<gl gl.h=""> #include <gl glu.h=""></gl></gl></pre>		
\checkmark The above lines can be replaced by using GLUT header file which ensures gl.h and glu.h are included correctly,		
✓ #include <gl glut.h="">//GL in windows</gl>		
\checkmark In Apple OS X systems, the header file inclusion statement will be, \checkmark #include <glut glut.h=""></glut>		
Display-Window Management Using GLUT		
\checkmark We can consider a simplified example, minimal number of operations for displaying a		
picture.		
Step 1: initialization of GLUT		
We are using the OpenGL Utility Toolkit, our first step is to initialize GLUT.		
This initialization function could also process any command line arguments, but we will not need to use these parameters for our first example programs.		
We perform the GLUT initialization with the statement		
glutInit (&argc, argv);		
Step 2: title		
We can state that a display window is to be created on the screen with a given caption for the title bar. This is accomplished with the function		
glutCreateWindow ("An Example OpenGL Program");		
where the single argument for this function can be any character string that we want to		
use for the display-window title.		
Step 3: Specification of the display window		
Then we need to specify what the display window is to contain.		
For this, we create a picture using OpenGL functions and pass the picture definition to the GLUT routine glutDisplayFunc, which assigns our picture to the display window.		
Example: suppose we have the OpenGL code for describing a line segment in a procedure called lineSegment.		
Then the following function call passes the line-segment description to the display window:		
glutDisplayFunc (lineSegment);		

	Step 4: one more GLUT function				
	But the display window is not yet on the	e screen.			
	We need one more GLUT function to c	omplete the window-processing operations.			
	After execution of the following state including their graphic content, are now activat	ement, all display windows that we have created, red:			
	glutMainLoop ();				
		ur program. It displays the initial graphics and puts r input from devices such as a mouse or keyboard.			
	Step 5: these parameters using additional GLU	T functions			
	□ Although the display window that we can	reated will be in some default location and size,			
	we can set these parameters using additional G	LUT functions.			
(b)	Differentiate GL_LINES, GL_LINE_STRIP and diagrams.	d GL_LINE_LOOP with code snippets and neat	5M	CO1	L2
	Case 1: Lines gl <u>Begin</u> (GL_LINES); glVertex2iv (p1); glVertex2iv (p2);	p3			
	glVertex2iv (p3); glVertex2iv (p4); glVertex2iv (p5); glEnd ();	p2 p4			
	Case 2: GL LINE STRIP:				
		ne segments. However, the final vertex is not			
	glBegin (GL_LINES_STRIP); glVertex2iv (p1); glVertex2iv (p2); glVertex2iv (p3); glVertex2iv (p4); glVertex2iv (p5); glEnd ();	p3 p5 p2 p1 p4			

	Case 3: GL_LINE_LOOP:			
	Successive vertices are connected using line segments to form a closed path or loop i.e., final vertex is connected to the initial vertex.			
	glBegin (GL_LINES_LOOP);			
	glVertex2iv (p1);			
	glVertex2iv (p2); p5 p1			
	glVertex2iv (p3);			
	glVertex2iv (p4);			
	glVertex2iv (p5);			
	glEnd (); p2 p4			
3 (a)	With a neat diagram, explain Bresenham's line drawing algorithm for slope >1	5M	C01	L2
	Bresenham's Algorithm:			
	→ It is an efficient raster scan generating algorithm that uses incremental integral calculations			
	\rightarrow To illustrate Bresenham's approach, we first consider the scan-			
	conversion process for lines with positive slope less than 1.0.			
	\rightarrow Pixel positions along a line path are then determined by sampling at unit x			
	intervals. Starting from the left endpoint (x0, y0) of a given line, we step to			
	each successive column (x position) and plot the pixel whose scan-line y value			
	is closest to the line path.			
	→ Consider the equation of a straight line $y=mx+c$ where $m=dy/dx$			
	Bresenham's Line-Drawing Algorithm for m > 1.0			
	1. Input the two line endpoints and store the left endpoint in (x0, y0).			
	2. Set the color for frame-buffer position (x0, y0); i.e., plot the first point.			
	 Calculate the constants ∆x, ∆y, 2∆y, and 2∆y – 2∆x, and obtain the starting value for 			
	the decision parameter as			
	$\mathbf{p0} = 2\Delta \mathbf{x} - \Delta \mathbf{y}$			
	4. At each xk along the line, starting at $k = 0$, perform the following test:			
	If $pk < 0$, the next point to plot is $(xk + 1, yk)$ and			
	$\mathbf{p}_{\mathbf{k}+1} = \mathbf{p}_{\mathbf{k}} + 2\Delta \mathbf{x}$			
	Otherwise, the next point to plot is $(xk + 1, yk + 1)$ and			
	$\mathbf{p}_{k+1} = \mathbf{p}_k + 2\Delta \mathbf{x} - 2\Delta \mathbf{y}$			
	5. Repeat step 4 $\Delta y - 1$ more times.			

(b) '	Trace points generated by Bresenham's line drawing algorithm for k, p_k and (x_{k+1}, y_{k+1}) for the	5M	CO1	L3
С	coordinates (2,2) to (10,7). Plot the points generated.			
	k Pic (xik+1, Yk+1) Pk			
	$\bigcirc (3,3) \checkmark (5,3) \land (5$			
	1 -4 (4,3) = 2 + 10 - 16 = -4			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	3 0 (6,5) - 6+10 = -6			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	6 -2 (9, 6) (-2 + 10 = 8)			
	7. 8 (1017)/			
			~~~	
4 (a)	Explain with neat diagrams, rotation about a pivot point and the derivation for the composite 3x3 homogeneous matrix thereof.	5M	CO2	L2
	General Two-Dimensional Pivot-Point Rotation			
	$(x_r, y_r)$			
	(a) (b) (c) (d) Original Position Translation of Rotation Translation of			
	of Object and     Object so that     about     Object so that       Pivot Point     Pivot Point     Origin     the Pivot Point $(x_r, y_r)$ is at     is Returned       Origin     to Position $(x_r, y_r)$			
	$\begin{bmatrix} 1 & 0 & x_r \\ 0 & 1 & y_r \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_r \\ 0 & 1 & -y_r \\ 0 & 0 & 1 \end{bmatrix}$			
	$= \begin{bmatrix} \cos\theta & -\sin\theta & x_r(1-\cos\theta) + y_r\sin\theta\\ \sin\theta & \cos\theta & y_r(1-\cos\theta) - x_r\sin\theta\\ 0 & 0 & 1 \end{bmatrix}$			
	which can be expressed in the form			
	$\mathbf{T}(x_r, y_r) \cdot \mathbf{R}(\theta) \cdot \mathbf{T}(-x_r, -y_r) = \mathbf{R}(x_r, y_r, \theta)$			
	where $\mathbf{T}(-\mathbf{x}, -\mathbf{y}) = \mathbf{T}^{-1}(\mathbf{x}, \mathbf{y})$ .			
	Consider the line from (6,2) to (6,6). What are the coordinates of the line when $sx = sy = 0.5$ . Plot he line and coordinates. Show the 3x3 homogenous matrix calculations. Does the line move toward	5M	CO2	L3
	or away from the coordinate origin?			





CI

CCI

HOD