

s fature [1-1-1] Jai Analysis 1. The input size is the order of the)=) (= ; ; ; ; ; matriz 'D'. 2. The basic operations to the are the two arithmetical operations i.e; multiplication and addition. 3 M(D) = E E E I i=0 j=0 j=0 ນເປັນເຊັ່ງເຂົ້າເຊິ່ງ ການທີ່ການຂັກແປນ ເຮັດຫຼາດ ເຊັ່ງ ຫຼາວ ແລະເວັ T(n) 2 - Cm M(n) = Cm(n3). Con Man + Ca A Man = $= C_m n^3 + C_m n^3 = (C_m + C_m) n^3.$ 1 (b) Design an algorithm for performing sequential search and compute best case, worst case and CO1 L2 4 average case efficiency with suitable notations. SCHEME: Algorithm – 2 Marks All cases efficiency and time complexity – 2 Marks **SOLUTION:** Searce ential Search: JE is a general scarching, populer it compasies the successive elements of a given lest with a given search key unfill a either a match is encountered. Or the last is exhausted with out fendeng HE NO OF PS a match. Algorithm: Seaventral Search (A Co-m], K) 11 Implements a sequentful search with PS PS a search key " Input: An away A of n elements and a search key B. Noutput: The Index of the element in A [o....n-1] or -1 16 element is not found. Reconserves WWD JURD 140 while ACIJ = K do Tell+r hand a lange It IKA sector i else return -1

O-notation

DEFINITION A function t(n) is said to be in O(g(n)), denoted $t(n) \in O(g(n))$, if t(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

 $t(n) \le cg(n)$ for all $n \ge n_0$.

 $100n + 5 \le 100n + 5n$ (for all $n \ge 1$) = 105n

Ω -notation

DEFINITION A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that

 $t(n) \ge cg(n)$ for all $n \ge n_0$.

Here is an example of the formal proof that $n^3 \in \Omega(n^2)$:

$$n^3 \ge n^2$$
 for all $n \ge 0$,

Θ -notation

DEFINITION A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constants c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \le t(n) \le c_1g(n)$$
 for all $n \ge n_0$.

The definition is illustrated in Figure 2.3.

For example, let us prove that $\frac{1}{2}n(n-1) \in \Theta(n^2)$. First, we prove the right inequality (the upper bound):

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2 \quad \text{for all } n \ge 0.$$

Second, we prove the left inequality (the lower bound):

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n$$
 (for all $n \ge 2$) = $\frac{1}{4}n^2$.

Hence, we can select $c_2 = \frac{1}{4}$, $c_1 = \frac{1}{2}$, and $n_0 = 2$.

Design an algorithm for performing Merge sort. Apply the same to the following set 5+5 CO2 L3 3(a) of numbers 4, 9, 0, -1, 6, 8, 9, 2, 3, 12 & & L2

SCHEME:

Algorithm – 5 Marks Solving the problem – 5 Marks

SOLUTION: 1/ sonts array A[0.... n-1] by recursive merge sort elements. 11 output: Asviay A [0.....n-1] sorted in non-decreasing order de aucours if n>lus to shamily shame of all ? COPY A [0..... $(n/2)^{-1}$] to B [0..... $(n/2)^{-1}$] copy $A [[t]_2]_{1} \dots h = c [[n]_2]_{1} \dots n-1]$ Mergesort (B[0..... (1/2]-1]) Hengewort (c [0+++. [n/2]-1]) merge (B,C,A) Given elements 4,9,0, -1, 6, 8, 9, 2, 3, 12 90-16892312 4 892312 6) 9 0 -1 4 90 892 312 1-16 4 2 [3] [12 490 -16 89 वि नि ि है वि 3 12 (2) 89 2 312 6 9 10 4 9 28 312 -16 049 213 8 9 12 -104691 -10234689912

a) Consider the elements of array {E, X, A, M, P, L, E}. Perform bubble sort and selection sort on these elements and list out the number of comparisons taken for	6	CO2	L.
each sort. Identify which algorithm performed better.			
SCHEME: Bubble sort – 3 Marks			
Selection sort – 3 Marks			
SOLUTION:			
BUBBLE SORT $E \xrightarrow{?} X \xrightarrow{?} A$ M P L			
E A $X \stackrel{?}{\leftrightarrow} M$ P L E			
$E \qquad A \qquad M \qquad X \stackrel{?}{\leftrightarrow} P \qquad L \qquad E$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
E A M P L E $ X$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$A \qquad E \qquad L \qquad M \stackrel{?}{\leftrightarrow} E$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
A E E L			
$A \stackrel{?}{\leftrightarrow} E \stackrel{?}{\leftrightarrow} E \stackrel{?}{\leftrightarrow} L$			
SELECTION SORT:			
$ \begin{vmatrix} E & X & \mathbf{A} & M & P & L & E \\ A & X & \mathbf{E} & M & P & L & E \\ A & E & X & M & P & L & \mathbf{E} \\ A & E & E & M & P & \mathbf{L} & \mathbf{X} \\ A & E & E & L & M & P & \mathbf{L} & X \\ A & E & E & L & M & \mathbf{P} & \mathbf{X} \\ A & E & E & L & M & \mathbf{P} & X \\ A & E & E & L & M & P & X \\ \end{vmatrix} $			
Number of Comparisons in Bubble sort and Selection sort are: 21			
b) Design an algorithm for checking whether all elements in a given array are distinct.	4	CO2	L
SCHEME:			
Algorithm – 4 Marks			
SOLUTION:			

ALGORITHM UniqueElements $(A[0n-1])$ //Determines whether all the elements in a given array are distinct //Input: An array $A[0n-1]$ //Output: Returns "true" if all the elements in A are distinct // and "false" otherwise for $i \leftarrow 0$ to $n - 2$ do for $j \leftarrow i + 1$ to $n - 1$ do if $A[i] = A[j]$ return false return true			
For the following keyword "ALGORITHM" by applying Quick Sort technique. CHEME: olving the problem – 5 Marks OLUTION: $\begin{array}{c} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	5	CO2	L2

Give recursive algorithm to solve towers of Hanoi problem. Show that the efficiency of this algorithm is exponential.	5	CO1	L2
SCHEME: Algorithm – 2 Marks Recurrence Relation – 1 Mark Solving and finding the efficiency – 2 Marks			
SOLUTION:			
E22: Tower of Hanoi Hitron Hans (A)H			
ALGORITHM: Tower of Hanor (de n)			
11 Disks on one peg is moved to thi			
Peg with the help of auxiliary and			
11 Juput: N disks on 1st peg			
1 output: N desks on 3rd peg.			
Pb nel move desc			
nove desc			
Lower obtilianoi (n=1) while =			
	SCHEME: Algorithm - 2 Marks Recurrence Relation - 1 Mark Solving and finding the efficiency - 2 Marks SOLUTION: 22° Towers of Hanoi ALGORITHM: Tower of Hanoi M Disks on One peg is moved to thi Peg with the help of auxiliary and II Input: N disks on ist peg I output: N disks on 3 rd peg. It n=1 move disc else Tower of Hanoi (n-1) move disc	of this algorithm is exponential. SCHEME: Algorithm - 2 Marks Recurrence Relation - 1 Mark Solving and finding the efficiency - 2 Marks SOLUTION: E225 Towes of Hanoi ALGORITHM: Towes of Hanoi ALGORITHM: Towes of Hanoi (, n) I Disks on One peg is moved to this Peg with the help of auxiliary and I Input: N disks on 1 st peg I output: N disks on 3 rd peg. It n=1 move disc else towerd Hanoi (n-1) move disc	of this algorithm is exponential. SCHEME: Algorithm - 2 Marks Recurrence Relation - 1 Mark Solving and finding the efficiency - 2 Marks SOLUTION: E12 ⁵ Tower of Hanoi ALGORITHM: Tower of Hanoi More dfsc else Towerd Hanoi (n-i) move dfsc

$$\frac{d_{1}d_{1}d_{2}d_{2}}{d_{1}d_{2}d_{2}}$$
i the number of other is the input-
a the number of view is unsitten as:

$$H(t) = 1$$

$$H(t) = 2H(t) - 0 + 1$$

$$= 2H(t) - 0 + 1$$

$$= 2(t_{1}(t_{1} - 2t) + 1) + 1 = 2H(t) - 2(t_{1} - 2t) + 2t + 1)$$

$$= 2(t_{1}(t_{1} - 2t) + 1) + 1 = 2H(t) - 2(t_{1} - 2t) + 2t + 1)$$

$$= 2(t_{1}(t_{1} - 2t) + 1) + 1 = 2H(t) - 2(t_{1} - 2t) + 2t + 1)$$

$$= 2(t_{1}(t_{1} - 2t) + 1) + 1 = 2H(t) - 2(t_{1} - 2t) + 2t + 1)$$

$$= 2(t_{1}(t_{1} - 2t) + 1) + 2^{t_{1}} + 2^{t_{2}} + 2t + 1$$

$$= 2(t_{1}(t_{1} - 2t) + 2^{t_{1}} + 2^{t_{2}} + 2t + 1)$$

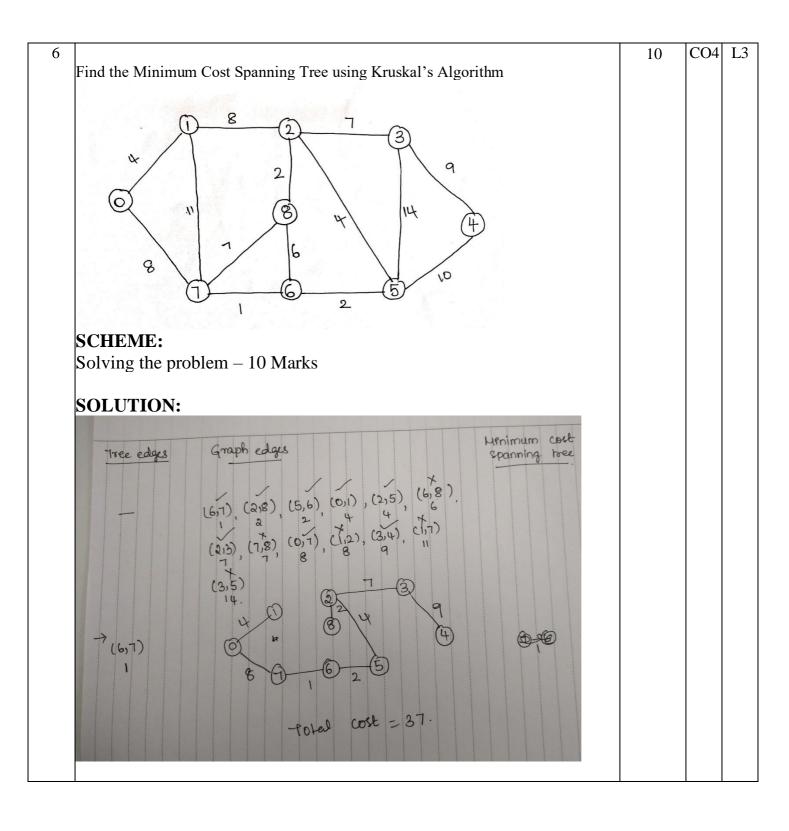
$$= 2(t_{1}(t_{1} - 2t) + 2^{t_{1}} + 2^{t_{2}} + 2t + 1)$$

$$H(t) = 2(t_{1}(t_{1} - t) + 2^{t_{1}} + 2^{t_{2}} + 2t + 1)$$

$$H(t) = 2(t_{1}(t_{1} - t) + 2^{t_{1}} + 2^{t_{2}} + 2t + 1)$$

$$H(t) = 2(t_{1}(t_{1} - t) + 2^{t_{1}} + 2^{t_{2}} + 2t + 1)$$

$$= 2^{t_{1}}(H(t) - 1) + 2^{t_{1}} + 2^{t_{2}} + 2t + 1$$


$$= 2^{t_{1}}(H(t) - 1) + 2^{t_{1}} + 2^{t_{2}} + 2t + 1$$

$$H(t) = 2^{t_{1}}(H(t) - 1) + 2^{t_{1}} + 2^{t_{2}} - 1$$

$$= 2^{t_{1}}(H(t) - 1) + 2^{t_{1}} - 1$$

$$= 2^{t_{1}}(H(t) - 1) + 2^{t_{2}} - 1$$

$$= 2^{t_{1}}(H(t) + 2^{t_{2}} - 1$$

