

USN

Internal Assessment Test 1 – March-2024

Sub: NoSql Sub Code: 18CS823 Branch: CSE

Date: 16-03-2024 Duration: 90 mins Max Marks: 50 Sem / Sec: VIII (A, B & C) OBE

Answer any FIVE FULL Questions MARKS CO RBT

1(a)

ANS:

Explain the necessity for the emergence of NoSql databases in the tech
landscape. Detail how NoSql databases specifically address the challenges
encountered by social networking companies. Additionally, enumerate the
obstacles or limitations associated with NoSql databases and propose strategies
to mitigate these barriers.

Emergence 2M
CHALLENGES 3M

The term “NoSQL” first made its appearance in the late 90s as the name of an
open source relational database. Led by Carlo Strozzi , this database stores its
tables as ASCII files, each tuple represented by a line with fields separated by
tabs. The name comes from the fact that the database doesn’t use SQL as a
query language. Instead, the database is manipulated through shell scripts that
can be combined into the usual UNIX pipelines. Other than the terminological
coincidence, Strozzi’s NoSQL had no influence on the databases The usage of
“NoSQL” that we recognize today traces back to a meetup on June 11, 2009 in
San Francisco organized by Johan, a software developer based in London.
The example of Big Table and Dynamo had inspired a bunch of projects
experimenting with alternative data storage, and discussions of these had
become a feature of the better software conferences around that time.
Johan was interested in finding out more about some of these new databases
while he was in San Francisco for a Hadoop summit. Since he had little time
there, he felt that it wouldn’t be feasible to visit them all, so he decided to host
a meetup where they could all come together and present their work to
whoever was interested.

Challenges:

 Back-ups in Application Consistent: Determining the sequence of changes

across replicas, which is critical in selecting which values should compose a
snapshot, is a typical difficulty in quorum-based replication systems. For
example, determining a rigorous ordering between two write requests to the
same database object that arrived at two distinct nodes at the same time is
challenging. As a result of the absence of ordering, determining the most
recent value of a database item at any given time is difficult.

 Database and node failures during backups and restores : Node failures
are common in NoSQL databases since they are designed to grow to hundreds

5

2

3

CO1

L2

of nodes. As a result, any backup method must be able to account for data
collection failures from down nodes and their influence on quorum
consistency. On the other hand, restorations must take into consideration
failed cluster nodes and modify data re population correspondingly.

 Analytics and business intelligence: NoSQL was created to fulfill the needs
of Web 2.0 applications, and as a result, all of its characteristics are geared
toward that goal. Other commercial systems, on the other hand, necessitate
moving beyond the insert-read-update-delete cycle. Even the most basic
queries need extensive programming knowledge, and integrated BI tools are
insufficient.

 Data Integrity: Verifying data integrity at the block level is another issue
with distributed NoSQL databases. Checksum work for scale-up databases
because the restored data is physically identical to the backup data. The
restored data in scale-out databases is semantically comparable to the backup
data, but it is not physically identical. In this situation, we’ll need to come up
with a unique method for identifying semantic equivalence between recovered
and backup data, which will allow us to spot data corruption issues that may
arise throughout the backup and restoration process.

 Human Errors: Due to the dynamic nature of NoSQL databases, it is quite
common for human errors to happen, for example, data deletion or alteration.
These errors can lead to data loss, data inconsistency and in some cases, data
breaches. Organizations need to have strict protocols in place to minimize the
chance of human errors happening and have proper disaster recovery plans in
place.

1(b)

ANS:

What are four categories of NoSql Databases?List some database products for each
category.

Key-Value and Document Data Models 2M

Column Data Models 1.5M

Graph Data Models 1.5M

Key-Value and Document Data Models
We said earlier on that key-value and document databases were strongly
aggregate-oriented. What we meant by this was that we think of these databases
as primarily constructed through aggregates. Both of these types of databases
consist of lots of aggregates with each aggregate having a key or ID that’s used to
get at the data. The two models differ in that in a key-value database, the
aggregate is opaque to the database—just some big blob of mostly meaningless
bits. In contrast, a document database is able to see a structure in the aggregate.
The advantage of opacity is that we can store With a key-value store, we can only
access an aggregate by lookup based on its key.
With a document database, we can submit queries to the database based on the
fields in the aggregate, we can retrieve part of the aggregate rather than the whole
thing, and database can create indexes based on the contents of the aggregate.

Column-Family Stores

One of the early and influential NoSQL databases was Google’s BigTable [Chang

5

2

1.5

CO1 L2

etc.]. Its name conjured up a tabular structure which it realized with sparse
columns and no schema. As you’ll soon see, it doesn’t help to think of this structure
as a table; rather, it is a two-level map. But, however you think about the structure,
it has been a model that influenced later databases such as HBase and Cassandra.
These databases with a bigtable-style data model are often referred to as column
stores, but that name has been around for a while to describe a different animal.
Pre-NoSQL column stores, such as C-Store [C-Store], were happy with SQL and the
relational model.

Graph Databases

Graph databases are an odd fish in the NoSQL pond. Most NoSQL databases were
inspired by the need to run on clusters, which led to aggregate-oriented data
models of large records with simple connections. Graph databases are motivated
by a different frustration with relational databases and thus have an opposite
model—small records with complex interconnections, something like Figure 3.1.

1.5

2(a)

Ans:

You are tasked with designing a database system for an e-commerce platform that
needs to efficiently handle large volumes of product data. Explain the concept of
aggregates in the context of this scenario and how NoSql databases support their
management. Additionally, outline two potential consequences or impacts of
utilizing aggregates in the database system design for this e-commerce platform.

Aggregate 1.5 M

2 Consequences 3.5M

Aggregate:

 The relational model takes the information that we want to store and divides it
into tuples (rows). A tuple is a limited data structure: It captures a set of values, so
you cannot nest one tuple within another to get nested records, nor can you put a
list of values or tuples within another. This simplicity underpins the relational
model—it allows us to think of all operations as operating on and returning tuples.

Consequences of Aggregate Orientation:

While the relational mapping captures the various data elements and their
relationships reasonably well, it does so without any notion of an aggregate entity.

5

1.5

CO1 L2

In our domain language, we might say that an order consists of order items, a
shipping address, and a payment. This can be expressed in the relational model in
terms of foreign key relationships—but there is nothing to distinguish
relationships that represent aggregations from those that don’t. As a result, the
database can’t use a knowledge of aggregate structure to help it store and
distribute the data. Various data modeling techniques have provided ways of
marking aggregate or composite structures. The problem, however, is that
modelers rarely provide any semantics for what makes an aggregate relationship
different from any other; where there are semantics, they vary. When working
with aggregate-oriented databases, we have a clearer semantics to consider by
focusing on the unit of interaction with the data storage. It is, however, not a
logical data property: It’s all about how the data is being used by applications—a
concern that is often outside the bounds of data modeling.
Relational databases have no concept of aggregate within their data model, so we
call them aggregate-ignorant. In the NoSQL world, graph databases are also
aggregate-ignorant. Being aggregate-ignorant is not a bad thing. It’s often difficult
to draw aggregate boundaries well, particularly if the same data is used in many
different contexts. An order makes a good aggregate when a customer is making
and reviewing orders, and when the retailer is processing orders.
Aggregates have an important consequence for transactions. Relational databases
allow you to manipulate any combination of rows from any tables in a single
transaction. Such transactions are called ACID transactions: Atomic, Consistent,
Isolated, and Durable. ACID is a rather contrived acronym; the real point is the
atomicity: Many rows spanning many tables are updated as a single o isolated
from each other so they cannot see a partial update.

3.5

2(b)

ANS:

Write a note on
I) Impedance Mismatch
II) Schemaless databases

IMPEDANCE MISMATCH 2.5M
SCHEMALESS DB 2.5M
Impedance Mismatch:

Relational databases provide many advantages, but they are by no means perfect.
Even from their early days, there have been lots of frustrations with them. For
application developers, the biggest frustration has been what’s commonly called
the impedance mismatch: the difference between the relational model and the in-
memory data structures. The relational data model organizes data into a structure
of tables and rows, or more properly, relations and tuples. In the relational model,
a tuple is a set of name-value pairs and a relation is a set of tuples. (The relational
definition of a tuple is slightly different from that in mathematics and many
programming languages with a tuple data type, where a tuple is a sequence of
values). All operations in SQL consume and return relations, which leads to the
mathematically elegant relational algebra.
The impedance mismatch is a major source of frustration to application
developers, and in the 1990s many people believed that it would lead to relational
databases being replaced with databases that replicate the in-memory data
structures to disk. That decade was marked with the growth of object-oriented
programming languages, and with them came object-oriented databases—both
looking to be the dominant environment for software development in the new
millennium.

5

2.5

CO1 L2

 Schemaless databases:

A common theme across all the forms of NoSQL databases is that they are
Schemaless. When you want to store data in a relational database, you first have to
define a schema—a defined structure for the database which says what tables
exist, which columns exist, and what data types each column can hold. Before you
store some data, you have to have the schema defined for it.With NoSQL
databases, storing data is much more casual.
A key-value store allows you to store any data you like under a key. A document
database effectively does the same thing, since it makes no restrictions on the
structure of the documents you store. Column-family databases allow you to store
any data under any column you like. Graph databases allow you to freely add new
edges and freely add properties to nodes and edges as you wish.

Advocates of Schemaless rejoice in this freedom and flexibility. With a schema,
you have to figure out in advance what you need to store, but that can be hard to
do. Without a schema binding you, you can easily store whatever you need. This
allows you to easily change your data storage as you learn more about your
project. You can easily add new things as you discover them. Furthermore, if you
find you don’t need some things anymore, you can just stop storing them, without
worrying about losing old data as you would if you delete columns in a relational
schema.

2.5

3(a)

ANS:

Which data model does not support data aggregate orientation?Differentiate
between key value and document oriented data models.

Not supporting Data model 1M
Differences 4M

The aggregate-Oriented database is the NoSQL database which does not support
ACID transactions and they sacrifice one of the ACID properties. Aggregate
orientation operations are different compared to relational database operations.

Key-Value and Document Data Models:

We said earlier on that key-value and document databases were strongly
aggregate-oriented. What we meant by this was that we think of these databases
as primarily constructed through aggregates. Both of these types of databases
consist of lots of aggregates with each aggregate having a key or ID that’s used to
get at the data.
The two models differ in that in a key-value database, the aggregate is opaque to
the database—just some big blob of mostly meaningless bits. In contrast, a
document database is able to see a structure in the aggregate. The advantage of
opacity is that we can store whatever we like in the aggregate. The database may
impose some general size limit, but other than that we have complete freedom. A
document database imposes limits on what we can place in it, defining allowable
structures and types. In return, however, we get more flexibility in access. With a
key-value store, we can only access an aggregate by lookup based on its key.
With a document database, we can submit queries to the database based on the
fields in the aggregate, we can retrieve part of the aggregate rather than the whole
thing, and database can create indexes based on the contents of the aggregate.
In practice, the line between key-value and document gets a bit blurry. People
often put an ID field in a document database to do a key-value style lookup.
Databases classified as key-value databases may allow you structures for data

5

1

2

CO1 L2

beyond just an opaque aggregate. For example, Riak allows you to add metadata to
aggregates for indexing and inter aggregate links, Redis allows you to break down
the aggregate into lists or sets. You can support querying by integrating search
tools such as Solr. As an example, Riak includes a search facility that uses Solr-like
searching on any aggregates that are stored as JSON or XML
structures. Despite this blurriness, the general distinction still holds. With key-value
databases, we expect to mostly look up aggregates using a key. With document
databases, we mostly expect to submit some form of query based on the internal
structure of the document; this might be a key, but it’s more likely to be something
else.

2

3(b)

ANS:

Assume you’re a data engineer for a financial analytics company that needs to
optimize its data processing pipeline for generating daily reports on stock market
trends. Describe the concept of materialized views within the context of this
scenario and elucidate two approaches to implementing them, providing relevant
examples for each approach.

When we talked about aggregate-oriented data models, we stressed their
advantages. If you want to access orders, it’s useful to have all the data for an
order contained in a single aggregate that can be stored and accessed as a unit.

Views provide a mechanism to hide from the client whether data is derived data or
base data—but can’t avoid the fact that some views are expensive to compute. To
cope with this, materialized views were invented, which are views that are
computed in advance and cached on disk. Materialized views are effective for data
that is read heavily but can stand being somewhat stale. Although NoSQL
databases don’t have views, they may have precomputed and cached queries, and
they reuse the term “materialized view” to describe them. It’s also much more of a
central aspect for aggregate-oriented databases than it is for relational systems,
since most applications will have to deal with some queries that don’t fit well with
the aggregate structure.

There are two rough strategies to building a materialized view. The first is the
eager approach where you update the materialized view at the same time you
update the base data for it. In this case, adding an order would also update the
purchase history aggregates for each product. This approach is good when you
have more frequent reads of the materialized view than you have writes and you
want the materialized views to be as fresh as possible. The application database.
approach is valuable here as it makes it easier to ensure that any updates to base
data also update materialized views.

Materialized views can be used within the same aggregate. An order document
might include an order summary element that provides summary information
about the order so that a query for an order summary does not have to transfer
the entire order document. Using different column families for materialized views
is a common feature of column- family databases. An advantage of doing this is
that it allows you to update the materialized view within the same atomic
operation.

5

2

3

CO1 L3

4(a)

Why data distribution is important. List the different data distribution models of
NOSQL.

5

CO2 L2

ANS: Data distribution 1M
Sharding 2M
Any One Replication 2M

The primary driver of interest in NoSQL has been its ability to run databases on a
large cluster. As data volumes increase, it becomes more difficult and expensive to
scale up buy a bigger server to run the database on. A more appealing option is to
scale out run the database on a cluster of servers. Aggregate orientation fits well
with scaling out because the aggregate is a natural unit to use for distribution.
Depending on your distribution model, you can get a data store that will give you
the ability to handle larger quantities of data, the ability to process a greater read
or write traffic, or more availability in the face of network slowdowns or breakages.

There are two paths to data distribution: replication and sharding.

Sharding:

Often, a busy data store is busy because different people are accessing different
parts of the dataset. In these circumstances we can support horizontal scalability
by putting different parts of the data onto different servers a technique that’s
called sharding (Figure 1.1).

Figure 1.1. Sharding puts different data on separate nodes, each of which does its
own reads and writes.

In the ideal case, we have different users all talking to different server nodes. Each
user only has to talk to one server, so gets rapid responses from that server. The
load is balanced out nicely between servers—for example, if we have ten servers,
each one only has to handle 10% of the load.
 This is where aggregate orientation comes in really handy. The whole point of
aggregates is that we design them to combine data that’s commonly accessed
together—so aggregates leap out as an obvious unit of distribution. When it comes
to arranging the data on the nodes, there are several factors that can help improve
performance. If you know that most accesses of certain aggregates are based on a
physical location,you can place the data close to where it’s being accessed. If you
have orders for someone who lives in Boston, you can place that data in your
eastern US data center. Another factor is trying to keep the load even. This means
that you should try to arrange aggregates so they are evenly distributed across the
nodes which all get equal amounts of the load. This may vary over time, for
example if some data tends to be accessed on certain days of the week—so there
may be domain-specific rules you’d like to use.

1

2

Master-Slave Replication:

With master-slave distribution, you replicate data across multiple nodes. One
node is designated as the master, or primary. This master is the authoritative
source for the data and is usually responsible for processing any updates to that
data. The other nodes are slaves, or secondaries. A replication process
synchronizes the slaves with the master (Figure 1.2).

Peer-to-Peer Replication:
Master-slave replication helps with read scalability but doesn’t help with scalability of

writes. It provides resilience against failure of a slave, but not of a master. Essentially, the
master is still a bottleneck and a single point of failure. Peer-to-peer replication (Figure
1.3) attacks these problems by not having a master. All the replicas have equal weight,
they can all accept writes, and the loss of any of the doesn’t prevent access to the data
store. With a peer-to-peer replication cluster, you can ride over node failures without
losing access to data. Furthermore, you can easily add nodes to improve your
performance.

2

1

 4(b)

As the leader of the backend development team for a high-traffic e-commerce
website, you need to ensure data availability and scalability during peak hours.
Consider the above scenario and Explain how master-slave replication can address
these challenges, detailing its implementation, benefits, and a concrete example of
its application in your e-commerce platform.

5 CO2 L3

ANS: Diagram 1.5M
Explanation 3.5M

Master-Slave Replication:

•With master-slave distribution, you replicate data across multiple nodes. One

node is designated as the master, or primary.

•This master is the authoritative source for the data and is usually responsible for

processing any updates to that data.

• The other nodes are slaves, or secondaries.

•A replication process synchronizes the slaves with the master (see Figure 4.2).

• Master-slave replication is most helpful for scaling when you have a read-
intensive dataset.

•You can scale horizontally to handle more read requests by adding more slave
nodes and ensuring that all read requests are routed to the slaves.

•However, limited by the ability of the master to process updates and its ability to

pass those updates on.

•Consequently it isn’t such a good scheme for datasets with heavy write traffic,
although offloading the read traffic will help a bit with handling the write load.

 A second advantage of master-slave replication is read resilience: Should the
master fail, the slaves can still handle read requests.

•The failure of the master does eliminate the ability to handle writes until either
the master is restored or a new master is appointed.

-> However, having slaves as replicates of the master does speed up recovery after
a failure of the master since a slave can be appointed a new master very quickly.

->The ability to appoint a slave to replace a failed master means that master-slave
replication is useful even if you don’t need to scale out.

•All read and write traffic can go to the master while the slave acts as a hot

backup.

->Masters can be appointed manually or automatically. Manual appointing
typically means that when you configure your cluster, you configure one node as
the master.

->With automatic appointment, you create a cluster of nodes and they elect one of
themselves to be the master.

•Apart from simpler configuration, automatic appointment means that the cluster
can automatically appoint a new master when a master fails, reducing downtime.

In order to get read resilience, you need to ensure that the read and write paths
into your application are different, so that you can handle a failure in the write
path and still read.

->Replication comes with some alluring benefits, but it also comes with the
problem of inconsistency.

•You have the danger that different clients, reading different slaves, will see
different values because the changes haven’t all propagated to the slaves.

•In the worst case, that can mean that a client cannot read a write it just made.

5(a)

ANS:

What is the CAP theorem? What are three properties which cannot be
simultaneously guaranteed? How it is applicable to NoSql Systems.

In the NoSQL world it’s common to refer to the CAP theorem as the reason why
you may need to relax consistency. It was originally proposed by Eric Brewer in
2000 [Brewer] and given a formal proof by Seth Gilbert and Nancy Lynch [Lynch
and Gilbert] a couple of years later. (You may also hear this referred to as Brewer’s
Conjecture.) The basic statement of the CAP theorem is that, given the three
properties of Consistency, Availability, and Partition tolerance, you can only get
two. Obviously this depends very much on how you define these three properties,
and differing opinions have led to several debates on what the real consequences
of the CAP theorem are.
Consistency is pretty much as we’ve defined it so far. Availability has a particular
meaning in the context of CAP it means that if you can talk to a node in the
cluster, it can read and write data.That’s subtly different from the usual meaning,
which we’ll explore later. Partition tolerance means that the cluster can survive
communication breakages in the cluster that separate the cluster into multiple
partitions unable to communicate with each other (situation known as a split
brain,
Figure 1.3. With two breaks in the communication lines, the network partitions
into two groups.
A single-server system is the obvious example of a CA system a system that has
Consistency and Availability but not Partition tolerance. A single machine can’t
partition, so it does not have to worry about partition tolerance. There’s only one
node so if it’s up, it’s available. Being up and keeping consistency is reasonable.
This is the world that most relational database systems live in. It is theoretically
possible to have a CA cluster. However, this would mean that if a partition ever
occurs in the cluster, all the nodes in the cluster would go down so that no client
can talk to a node. By the usual definition of “available,” this would mean a lack of
availability, but this is where CAP’s special usage of “availability” gets confusing.
CAP defines “availability” to mean “every request received by a non failing node in
the system must result in a response”. So a failed, unresponsive node doesn’t infer
a lack of CAP availability. This does imply that you can build a CA cluster, but you
have to ensure it will only partition rarely and completely. This can be done, at
least within a data center, but it’s usually prohibitively expensive. Remember that
in order to bring down all the nodes in a cluster on a partition, you also have to
detect the partition in a timely manner—which itself is no small feat.
So clusters have to be tolerant of network partitions. And here is the real point of
the CAP theorem.Although the CAP theorem is often stated as “you can only get
two out of three,” in practice what it’s saying is that in a system that may suffer
partitions, as distributed system do, you have to trade off consistency versus
availability. This isn’t a binary decision; often, you can trade off a little consistency
to get some availability. The resulting system would be neither perfectly
consistent nor perfectly available—but would have a combination that is
reasonable for
your particular needs.

5 CO2 L2

5(b)

ANS:

Write a short note on
i) Peer to Peer Consistency
ii) Replication

 Peer to Peer Consistency:

Master-slave replication helps with read scalability but doesn’t help with
scalability of writes.
It provides resilience against failure of a slave, but not of a master. Essentially, the
master is still a bottleneck and a single point of failure. Peer-to-peer replication (
Figure 1.3) attacks these problems by not having a master. All the replicas have
equal weight, they can all accept writes, and the loss of any of them doesn’t
prevent access to the data store.
The prospect here looks mighty fine. With a peer-to-peer replication cluster, you
can ride over node failures without losing access to data. Furthermore, you can
easily add nodes to improve your performance. There’s much to like here but
there are complications.The biggest complication is, again, consistency. When you
can write to two different places, you run the risk that two people will attempt to
update the same record at the same time a write-write conflict. Inconsistencies on
read lead to problems but at least they are relatively transient. Inconsistent writes
are forever. We’ll talk more about how to deal with write inconsistencies later on,
but for the moment we’ll note a couple of broad options. At one end, we can
ensure that whenever we write data, the Replicas coordinate to ensure we avoid a
conflict. This can give us just as strong a guarantee as a master, albeit at the cost
of network traffic to coordinate the writes. We don’t need all the replicas to agree
on the write, just a majority, so we can still survive losing a minority of the replica
nodes. At the other extreme, we can decide to cope with an inconsistent write.
There are contexts when we can come up with policy to merge inconsistent writes.
In this case we can get the full performance benefit of writing to any replica.
These points are at the ends of a spectrum where we trade off consistency for
availability.

Diagram: 1 M

5

4

CO2 L2

6(a)

ANS:

Highlight the significance of consistency in database systems and enumerate the
various types of consistency that are commonly recognized within this context.

Update Consistency:

We’ll begin by considering updating a telephone number. Coincidentally, Martin
and Pramod are looking at the company website and notice that the phone
number is out of date. Implausibly, they both have update access, so they both go
in at the same time to update the number. To make the example interesting, we’ll
assume they update it slightly differently, because each uses a slightly different
format. This issue is called a write-write conflict: two people updating the same
data item at the same time.
Approaches for maintaining consistency in the face of concurrency are often
described as pessimistic or optimistic. A pessimistic approach works by preventing
conflicts from occurring; an optimistic approach lets conflicts occur, but detects
them and takes action to sort them out. For update conflicts, the most common
pessimistic approach is to have write locks, so that in order to change a value you
need to acquire a lock, and the system ensures that only one client can get a
lock at a time.

5

1.5

CO2 L2

Read Consistency:

Having a data store that maintains update consistency is one thing, but it doesn’t
guarantee that readers of that data store will always get consistent responses to
their requests. Let’s imagine we have an order with line items and a shipping
charge. The shipping charge is calculated based on the line items in the order. If
we add a line item, we thus also need to recalculate and update the shipping
charge. In a relational database, the shipping charge and line items will be in
separate tables. The danger of inconsistency is that Martin adds a line item to his
order, Pramod then reads the line items and shipping charge, and then Martin
updates the shipping charge. This is an inconsistent read or read-write conflict.

Relaxing Consistency:

Consistency is a Good Thing but, sadly, sometimes we have to sacrifice it. It is
always possible to design a system to avoid inconsistencies, but often impossible
to do so without making unbearable sacrifices in other characteristics of the
system. As a result, we often have to trade off consistency for something else.
While some architects see this as a disaster, we see it as part of the inevitable
trade-offs involved in system design. Furthermore, different domains have
different tolerances for inconsistency, and we need to take this tolerance into
account as we make our decisions.

2

1.5

6(b)

ANS:

Explain the read-write conflict in logical consistency with the proper example.

Read Consistency:

Having a data store that maintains update consistency is one thing, but it doesn’t
guarantee that readers of that data store will always get consistent responses to
their requests. Let’s imagine we have an order with line items and a shipping
charge. The shipping charge is calculated based on the line items in the order. If
we add a line item, we thus also need to recalculate and update the shipping
charge. In a relational database, the shipping charge and line items will be in
separate tables. The danger of inconsistency is that Martin adds a line item to his
order, Pramod then reads the line items and shipping charge, and then Martin
updates the shipping charge. This is an inconsistent read or read-write conflict: In
Figure 2.1 Pramod has done a read in the middle of Martin’s write.
We refer to this type of consistency as logical consistency: ensuring that different
data items make sense together. To avoid a logically inconsistent read-write
conflict, relational databases support the notion of transactions. Providing Martin
wraps his two writes in a transaction, the system guarantees that Pramod will
either read both data items before the update or both after the update.
A common claim we hear is that NoSQL databases don’t support transactions and
thus can’t be consistent. Such claim is mostly wrong because it glosses over lots of
important details. Our first clarification is that any statement about lack of
transactions usually only applies to some NoSQL databases, in particular the
aggregate-oriented ones. In contrast, graph databases tend to support ACID
transactions just the same as relational databases.
Secondly, aggregate-oriented databases do support atomic updates, but only
within a single aggregate. This means that you will have logical consistency within
an aggregate but not between aggregates. So in the example, you could avoid

5 CO2 L2

running into that inconsistency if the order, the delivery charge, and the line items
are all part of a single order aggregate.
This example of a logically inconsistent read is the classic example that you’ll see in
any book that touches database programming. Once you introduce replication,
however, you get a whole new kind of inconsistency. Let’s imagine there’s one last
hotel room for a desirable event. The hotel reservation system runs on many
nodes. Martin and Cindy are a couple considering this room, but they are
discussing this on the phone because Martin is in London and Cindy is in Boston.
Meanwhile Pramod, who is in Mumbai, goes and books that last room. That
updates the replicated room availability, but the update gets to Boston quicker
than it gets to London. When Martin and Cindy fire up their browsers to see if the
room is available, Cindy sees it booked and Martin sees it free. This is another
inconsistent read—but it’s a breach of a different form of consistency we call
replication consistency: ensuring that the same data item has the same value
when read from different replicas (see Figure 1.2).

CI CCI HOD

PO Mapping

Course Outcomes

 Modu

les

covere

d

P

O

1

P

O

2

P

O

3

P

O

4

P

O

5

P

O

6

P

O

7

P

O

8

P

O

9

 P

O

1
0

P

O

1
1

P

O

1
2

P

S

O

1

P

S

O

2

P

S

O

3

P

S

O

4

CO1

Define, compare and use the four types
of NoSQL Databases

L2

1

2

2

3

2

3

-

-

-

-

-

-

-

3

-

-

-

CO2

Demonstrate an understanding of the
detailed architecture, define objects,

load data, query data and performance

tune Column-oriented NoSql
databases.

L2
2,3,4,5

2

2

3

3

3

-

-

-

-

-

-

-

3

-

-

-

CO3
Explain the detailed architecture,

define objects, load data, query data

and performance tune Document-
oriented NoSql databases.

L2

2,3,4,5

2

3

3

3

3

-

-

-

-

-

-

-

3

-

-

-

COGNITIVE
LEVEL

REVISED BLOOMS TAXONOMY KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,
experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,
conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)
CORRELATION

LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation

PO2 Problem analysis PO8 Ethics 1 Slight/Low

PO3 Design/development of solutions PO9 Individual and team work 2 Moderate/ Medium

PO4
Conduct investigations of complex
problems

PO10 Communication 3 Substantial/ High

PO5 Modern tool usage PO11 Project management and finance

PO6 The Engineer and society PO12 Life-long learning

PSO1 Develop applications using different stacks of web and programming technologies

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

PSO3 Apply software engineering methods to design, develop, test and manage software systems.

PSO4 Develop intelligent applications for business and industry

