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1(a) 
 
 
 
 
 

ANS: 

 

Explain the necessity for the emergence of NoSql databases in the tech 
landscape. Detail how NoSql databases specifically address the challenges 
encountered by social networking companies. Additionally, enumerate the 
obstacles or limitations associated with NoSql databases and propose strategies 
to mitigate these barriers. 
 
 
Emergence  2M 
CHALLENGES 3M 
 
The term “NoSQL” first made its appearance in the late 90s as the name of an 
open source relational database. Led by Carlo Strozzi , this database stores its 
tables as ASCII files, each tuple represented by a line with fields separated by 
tabs. The name comes from the fact that the database doesn’t use SQL as a 
query language. Instead, the database is manipulated through shell scripts that 
can be combined into the usual UNIX pipelines. Other than the terminological 
coincidence, Strozzi’s NoSQL had no influence on the databases The usage of 
“NoSQL” that we recognize today traces back to a meetup on June 11, 2009 in 
San Francisco organized by Johan, a software developer based in London. 
The example of Big Table and Dynamo had inspired a bunch of projects 
experimenting with alternative data storage, and discussions of these had 
become a feature of the better software conferences around that time. 
Johan was interested in finding out more about some of these new databases 
while he was in San Francisco for a Hadoop summit. Since he had little time 
there, he felt that it wouldn’t be feasible to visit them all, so he decided to host 
a meetup where they could all come together and present their work to 
whoever was interested. 

 
Challenges: 

 
 Back-ups in Application Consistent: Determining the sequence of changes 

across replicas, which is critical in selecting which values should compose a 
snapshot, is a typical difficulty in quorum-based replication systems. For 
example, determining a rigorous ordering between two write requests to the 
same database object that arrived at two distinct nodes at the same time is 
challenging. As a result of the absence of ordering, determining the most 
recent value of a database item at any given time is difficult. 

 Database and node failures during backups and restores : Node failures 
are common in NoSQL databases since they are designed to grow to hundreds 
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of nodes. As a result, any backup method must be able to account for data 
collection failures from down nodes and their influence on quorum 
consistency. On the other hand, restorations must take into consideration 
failed cluster nodes and modify data re population correspondingly. 

 Analytics and business intelligence: NoSQL was created to fulfill the needs 
of Web 2.0 applications, and as a result, all of its characteristics are geared 
toward that goal. Other commercial systems, on the other hand, necessitate 
moving beyond the insert-read-update-delete cycle. Even the most basic 
queries need extensive programming knowledge, and integrated BI tools are 
insufficient. 

 Data Integrity: Verifying data integrity at the block level is another issue 
with distributed NoSQL databases. Checksum work for scale-up databases 
because the restored data is physically identical to the backup data. The 
restored data in scale-out databases is semantically comparable to the backup 
data, but it is not physically identical. In this situation, we’ll need to come up 
with a unique method for identifying semantic equivalence between recovered 
and backup data, which will allow us to spot data corruption issues that may 
arise throughout the backup and restoration process. 

 Human Errors: Due to the dynamic nature of NoSQL databases, it is quite 
common for human errors to happen, for example, data deletion or alteration. 
These errors can lead to data loss, data inconsistency and in some cases, data 
breaches. Organizations need to have strict protocols in place to minimize the 
chance of human errors happening and have proper disaster recovery plans in 
place. 

1(b) 
 
 

ANS: 

What are four categories of NoSql Databases?List some database products for each 
category. 
 
 
Key-Value and Document Data Models  2M 
 
Column Data Models 1.5M 
 
Graph Data Models 1.5M 
 

Key-Value and Document Data Models 
We said earlier on that key-value and document databases were strongly 
aggregate-oriented. What we meant by this was that we think of these databases 
as primarily constructed through aggregates. Both of these types of databases 
consist of lots of aggregates with each aggregate having a key or ID that’s used to 
get at the data. The two models differ in that in a key-value database, the 
aggregate is opaque to the database—just some big blob of mostly meaningless 
bits. In contrast, a document database is able to see a structure in the aggregate. 
The advantage of opacity is that we can store With a key-value store, we can only 
access an aggregate by lookup based on its key.  
With a document database, we can submit queries to the database based on the 
fields in the aggregate, we can retrieve part of the aggregate rather than the whole 
thing, and database can create indexes based on the contents of the aggregate. 
 

Column-Family Stores 
 
One of the early and influential NoSQL databases was Google’s BigTable [Chang 
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etc.]. Its name conjured up a tabular structure which it realized with sparse 
columns and no schema. As you’ll soon see, it doesn’t help to think of this structure 
as a table; rather, it is a two-level map. But, however you think about the structure, 
it has been a model that influenced later databases such as HBase and Cassandra. 
These databases with a bigtable-style data model are often referred to as column 
stores, but that name has been around for a while to describe a different animal. 
Pre-NoSQL column stores, such as C-Store [C-Store], were happy with SQL and the 
relational model. 
 

Graph Databases 
 
Graph databases are an odd fish in the NoSQL pond. Most NoSQL databases were 
inspired by the need to run on clusters, which led to aggregate-oriented data 
models of large records with simple connections. Graph databases are motivated 
by a different frustration with relational databases and thus have an opposite 
model—small records with complex interconnections, something like Figure 3.1. 
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2(a) 
 
 
 
 
 

Ans: 

You are tasked with designing a database system for an e-commerce platform that 
needs to efficiently handle large volumes of product data. Explain the concept of 
aggregates in the context of this scenario and how NoSql databases support their 
management. Additionally, outline two potential consequences or impacts of 
utilizing aggregates in the database system design for this e-commerce platform. 
 
 
Aggregate 1.5 M 

 
2 Consequences  3.5M 

 
Aggregate: 
 
 The relational model takes the information that we want to store and divides it 
into tuples (rows). A tuple is a limited data structure: It captures a set of values, so 
you cannot nest one tuple within another to get nested records, nor can you put a 
list of values or tuples within another. This simplicity underpins the relational 
model—it allows us to think of all operations as operating on and returning tuples. 
 
Consequences of Aggregate Orientation: 
 
While the relational mapping captures the various data elements and their 
relationships reasonably well, it does so without any notion of an aggregate entity. 
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In our domain language, we might say that an order consists of order items, a 
shipping address, and a payment. This can be expressed in the relational model in 
terms of foreign key relationships—but there is nothing to distinguish 
relationships that represent aggregations from those that don’t. As a result, the 
database can’t use a knowledge of aggregate structure to help it store and 
distribute the data. Various data modeling techniques have provided ways of 
marking aggregate or composite structures. The problem, however, is that 
modelers rarely provide any semantics for what makes an aggregate relationship 
different from any other; where there are semantics, they vary. When working 
with aggregate-oriented databases, we have a clearer semantics to consider by 
focusing on the unit of interaction with the data storage. It is, however, not a 
logical data property: It’s all about how the data is being used by applications—a 
concern that is often outside the bounds of data modeling. 
Relational databases have no concept of aggregate within their data model, so we 
call them aggregate-ignorant. In the NoSQL world, graph databases are also 
aggregate-ignorant. Being aggregate-ignorant is not a bad thing. It’s often difficult 
to draw aggregate boundaries well, particularly if the same data is used in many 
different contexts. An order makes a good aggregate when a customer is making 
and reviewing orders, and when the retailer is processing orders. 
Aggregates have an important consequence for transactions. Relational databases 
allow you to manipulate any combination of rows from any tables in a single 
transaction. Such transactions are called ACID transactions: Atomic, Consistent, 
Isolated, and Durable. ACID is a rather contrived acronym; the real point is the 
atomicity: Many rows spanning many tables are updated as a single o isolated 
from each other so they cannot see a partial update. 

 
 
 
 
 
 

3.5  

2(b) 
 
 
 

ANS: 

Write a note on 
I) Impedance Mismatch 
II)  Schemaless databases 
 
 
IMPEDANCE MISMATCH  2.5M 
SCHEMALESS DB          2.5M 
Impedance Mismatch: 
 
Relational databases provide many advantages, but they are by no means perfect. 
Even from their early days, there have been lots of frustrations with them. For 
application developers, the biggest frustration has been what’s commonly called 
the impedance mismatch: the difference between the relational model and the in-
memory data structures. The relational data model organizes data into a structure 
of tables and rows, or more properly, relations and tuples. In the relational model, 
a tuple is a set of name-value pairs and a relation is a set of tuples. (The relational 
definition of a tuple is slightly different from that in mathematics and many 
programming languages with a tuple data type, where a tuple is a sequence of 
values). All operations in SQL consume and return relations, which leads to the 
mathematically elegant relational algebra. 
The impedance mismatch is a major source of frustration to application 
developers, and in the 1990s many people believed that it would lead to relational 
databases being replaced with databases that replicate the in-memory data 
structures to disk. That decade was marked with the growth of object-oriented 
programming languages, and with them came object-oriented databases—both 
looking to be the dominant environment for software development in the new 
millennium. 
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 Schemaless databases: 
 
A common theme across all the forms of NoSQL databases is that they are 
Schemaless. When you want to store data in a relational database, you first have to 
define a schema—a defined structure for the database which says what tables 
exist, which columns exist, and what data types each column can hold. Before you 
store some data, you have to have the schema defined for it.With NoSQL 
databases, storing data is much more casual.   
A key-value store allows you to store any data you like under a key. A document 
database effectively does the same thing, since it makes no restrictions on the 
structure of the documents you store. Column-family databases allow you to store 
any data under any column you like. Graph databases allow you to freely add new 
edges and freely add properties to nodes and edges as you wish. 

Advocates of Schemaless rejoice in this freedom and flexibility. With a schema, 
you have to figure out in advance what you need to store, but that can be hard to 
do. Without a schema binding you, you can easily store whatever you need. This 
allows you to easily change your data storage as you learn more about your 
project. You can easily add new things as you discover them. Furthermore, if you 
find you don’t need some things anymore, you can just stop storing them, without 
worrying about losing old data as you would if you delete columns in a relational 
schema. 
 

 
 
 
 

2.5 

3(a) 
 
 
ANS: 

Which data model does not support data aggregate orientation?Differentiate 
between key value and document oriented data models. 
 
Not supporting Data model 1M 
Differences                             4M 
 
The aggregate-Oriented database is the NoSQL database which does not support 
ACID transactions and they sacrifice one of the ACID properties. Aggregate 
orientation operations are different compared to relational database operations.  
 
Key-Value and Document Data Models: 
 
We said earlier on that key-value and document databases were strongly 
aggregate-oriented. What we meant by this was that we think of these databases 
as primarily constructed through aggregates. Both of these types of databases 
consist of lots of aggregates with each aggregate having a key or ID that’s used to 
get at the data. 
The two models differ in that in a key-value database, the aggregate is opaque to 
the database—just some big blob of mostly meaningless bits. In contrast, a 
document database is able to see a structure in the aggregate. The advantage of 
opacity is that we can store whatever we like in the aggregate. The database may 
impose some general size limit, but other than that we have complete freedom. A 
document database imposes limits on what we can place in it, defining allowable 
structures and types. In return, however, we get more flexibility in access. With a 
key-value store, we can only access an aggregate by lookup based on its key.  
With a document database, we can submit queries to the database based on the 
fields in the aggregate, we can retrieve part of the aggregate rather than the whole 
thing, and database can create indexes based on the contents of the aggregate. 
In practice, the line between key-value and document gets a bit blurry. People 
often put an ID field in a document database to do a key-value style lookup. 
Databases classified as key-value databases may allow you structures for data 
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beyond just an opaque aggregate. For example, Riak allows you to add metadata to 
aggregates for indexing and inter aggregate links, Redis allows you to break down 
the aggregate into lists or sets. You can support querying by integrating search 
tools such as Solr. As an example, Riak includes a search facility that uses Solr-like 
searching on any aggregates that are stored as JSON or XML 
structures. Despite this blurriness, the general distinction still holds. With key-value 
databases, we expect to mostly look up aggregates using a key. With document 
databases, we mostly expect to submit some form of query based on the internal 
structure of the document; this might be a key, but it’s more likely to be something 
else. 
 

 
 
 
 
 
 
 
 

2 
 

3(b) 
 
 
 
 
 

ANS: 

Assume you’re a data engineer for a financial analytics company that needs to 
optimize its data processing pipeline for generating daily reports on stock market 
trends. Describe the concept of materialized views within the context of this 
scenario and elucidate two approaches to implementing them, providing relevant 
examples for each approach. 
 
 
When we talked about aggregate-oriented data models, we stressed their 
advantages. If you want to access orders, it’s useful to have all the data for an 
order contained in a single aggregate that can be stored and accessed as a unit.  
 
Views provide a mechanism to hide from the client whether data is derived data or 
base data—but can’t avoid the fact that some views are expensive to compute. To 
cope with this, materialized views were invented, which are views that are 
computed in advance and cached on disk. Materialized views are effective for data 
that is read heavily but can stand being somewhat stale. Although NoSQL 
databases don’t have views, they may have precomputed and cached queries, and 
they reuse the term “materialized view” to describe them. It’s also much more of a 
central aspect for aggregate-oriented databases than it is for relational systems, 
since most applications will have to deal with some queries that don’t fit well with 
the aggregate structure. 
 
There are two rough strategies to building a materialized view. The first is the 
eager approach where you update the materialized view at the same time you 
update the base data for it. In this case, adding an order would also update the 
purchase history aggregates for each product. This approach is good when you 
have more frequent reads of the materialized view than you have writes and you 
want the materialized views to be as fresh as possible. The application database. 
approach is valuable here as it makes it easier to ensure that any updates to base 
data also update materialized views. 
 
Materialized views can be used within the same aggregate. An order document 
might include an order summary element that provides summary information 
about the order so that a query for an order summary does not have to transfer 
the entire order document. Using different column families for materialized views 
is a common feature of column- family databases. An advantage of doing this is 
that it allows you to update the materialized view within the same atomic 
operation. 
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4(a) 
 
 
 

Why data distribution is important. List the different data distribution models of 
NOSQL. 
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ANS: Data distribution 1M 
Sharding                2M 
Any One Replication 2M 
 
The primary driver of interest in NoSQL has been its ability to run databases on a 
large cluster. As data volumes increase, it becomes more difficult and expensive to 
scale up buy a bigger server to run the database on. A more appealing option is to 
scale out run the database on a cluster of servers. Aggregate orientation fits well 
with scaling out because the aggregate is a natural unit to use for distribution. 
Depending on your distribution model, you can get a data store that will give you 
the ability to handle larger quantities of data, the ability to process a greater read 
or write traffic, or more availability in the face of network slowdowns or breakages. 
 
There are two paths to data distribution: replication and sharding. 
 

Sharding: 
 
Often, a busy data store is busy because different people are accessing different 
parts of the dataset. In these circumstances we can support horizontal scalability 
by putting different parts of the data onto different servers a technique that’s 
called sharding ( Figure 1.1). 

 
 
Figure 1.1. Sharding puts different data on separate nodes, each of which does its 
own reads and writes. 
 
In the ideal case, we have different users all talking to different server nodes. Each 
user only has to talk to one server, so gets rapid responses from that server. The 
load is balanced out nicely between servers—for example, if we have ten servers, 
each one only has to handle 10% of the load. 
 This is where aggregate orientation comes in really handy. The whole point of 
aggregates is that we design them to combine data that’s commonly accessed 
together—so aggregates leap out as an obvious unit of distribution. When it comes 
to arranging the data on the nodes, there are several factors that can help improve 
performance. If you know that most accesses of certain aggregates are based on a 
physical location,you can place the data close to where it’s being accessed. If you 
have orders for someone who lives in Boston, you can place that data in your 
eastern US data center. Another factor is trying to keep the load even. This means 
that you should try to arrange aggregates so they are evenly distributed across the 
nodes which all get equal amounts of the load. This may vary over time, for 
example if some data tends to be accessed on certain days of the week—so there 
may be domain-specific rules you’d like to use. 
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Master-Slave Replication: 
 
With master-slave distribution, you replicate data across multiple nodes. One 
node is designated as the master, or primary. This master is the authoritative 
source for the data and is usually responsible for processing any updates to that 
data. The other nodes are slaves, or secondaries. A replication process 
synchronizes the slaves with the master ( Figure 1.2). 

 
 

Peer-to-Peer Replication: 
Master-slave replication helps with read scalability but doesn’t help with scalability of 

writes. It provides resilience against failure of a slave, but not of a master. Essentially, the 
master is still a bottleneck and a single point of failure. Peer-to-peer replication ( Figure 
1.3) attacks these problems by not having a master. All the replicas have equal weight, 
they can all accept writes, and the loss of any of the doesn’t prevent access to the data 
store. With a peer-to-peer replication cluster, you can ride over node failures without 
losing access to data. Furthermore, you can easily add nodes to improve your 
performance. 
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   4(b) 
 
 
 
 
 
 

As the leader of the backend development team for a high-traffic e-commerce 
website, you need to ensure data availability and scalability during peak hours. 
Consider the above scenario and Explain how master-slave replication can address 
these challenges, detailing its implementation, benefits, and a concrete example of 
its application in your e-commerce platform. 
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ANS: Diagram 1.5M 
Explanation 3.5M 
 

Master-Slave Replication:  

•With master-slave distribution, you replicate data across multiple nodes. One 

node is designated as the master, or primary.  

•This master is the authoritative source for the data and is usually responsible for 

processing any updates to that data.  

• The other nodes are slaves, or secondaries.  

•A replication process synchronizes the slaves with the master (see Figure 4.2).  

• Master-slave replication is most helpful for scaling when you have a read-
intensive dataset.  

•You can scale horizontally to handle more read requests by adding more slave 
nodes and ensuring that all read requests are routed to the slaves.  

 

•However, limited by the ability of the master to process updates and its ability to 

pass those updates on.  

•Consequently it isn’t such a good scheme for datasets with heavy write traffic, 
although offloading the read traffic will help a bit with handling the write load. 

 A second advantage of master-slave replication is read resilience: Should the 
master fail, the slaves can still handle read requests. 

•The failure of the master does eliminate the ability to handle writes until either 
the master is restored or a new master is appointed.  

-> However, having slaves as replicates of the master does speed up recovery after 
a failure of the master since a slave can be appointed a new master very quickly.  

->The ability to appoint a slave to replace a failed master means that master-slave 
replication is useful even if you don’t need to scale out.  

•All read and write traffic can go to the master while the slave acts as a hot 

backup.  



->Masters can be appointed manually or automatically. Manual appointing 
typically means that when you configure your cluster, you configure one node as 
the master.  

->With automatic appointment, you create a cluster of nodes and they elect one of 
themselves to be the master.  

•Apart from simpler configuration, automatic appointment means that the cluster 
can automatically appoint a new master when a master fails, reducing downtime.  

In order to get read resilience, you need to ensure that the read and write paths 
into your application are different, so that you can handle a failure in the write 
path and still read.  

->Replication comes with some alluring benefits, but it also comes with the 
problem of inconsistency.  

•You have the danger that different clients, reading different slaves, will see 
different values because the changes haven’t all propagated to the slaves. 

•In the worst case, that can mean that a client cannot read a write it just made.  
 



5(a) 
 
 
 

ANS: 

What is the CAP theorem? What are three properties which cannot be 
simultaneously guaranteed? How it is applicable to NoSql Systems. 
 
 
In the NoSQL world it’s common to refer to the CAP theorem as the reason why 
you may need to relax consistency. It was originally proposed by Eric Brewer in 
2000 [Brewer] and given a formal proof by Seth Gilbert and Nancy Lynch [Lynch 
and Gilbert] a couple of years later. (You may also hear this referred to as Brewer’s 
Conjecture.) The basic statement of the CAP theorem is that, given the three 
properties of Consistency, Availability, and Partition tolerance, you can only get 
two. Obviously this depends very much on how you define these three properties, 
and differing opinions have led to several debates on what the real consequences 
of the CAP theorem are. 
Consistency is pretty much as we’ve defined it so far. Availability has a particular 
meaning in the context of CAP it means that if you can talk to a node in the 
cluster, it can read and write data.That’s subtly different from the usual meaning, 
which we’ll explore later. Partition tolerance means that the cluster can survive 
communication breakages in the cluster that separate the cluster into multiple 
partitions unable to communicate with each other (situation known as a split 
brain, 
Figure 1.3. With two breaks in the communication lines, the network partitions 
into two groups. 
A single-server system is the obvious example of a CA system a system that has 
Consistency and Availability but not Partition tolerance. A single machine can’t 
partition, so it does not have to worry about partition tolerance. There’s only one 
node so if it’s up, it’s available. Being up and keeping consistency is reasonable. 
This is the world that most relational database systems live in. It is theoretically 
possible to have a CA cluster. However, this would mean that if a partition ever 
occurs in the cluster, all the nodes in the cluster would go down so that no client 
can talk to a node. By the usual definition of “available,” this would mean a lack of 
availability, but this is where CAP’s special usage of “availability” gets confusing. 
CAP defines “availability” to mean “every request received by a non failing node in 
the system must result in a response”. So a failed, unresponsive node doesn’t infer 
a lack of CAP availability. This does imply that you can build a CA cluster, but you 
have to ensure it will only partition rarely and completely. This can be done, at 
least within a data center, but it’s usually prohibitively expensive. Remember that 
in order to bring down all the nodes in a cluster on a partition, you also have to 
detect the partition in a timely manner—which itself is no small feat. 
So clusters have to be tolerant of network partitions. And here is the real point of 
the CAP theorem.Although the CAP theorem is often stated as “you can only get 
two out of three,” in practice what it’s saying is that in a system that may suffer 
partitions, as distributed system do, you have to trade off consistency versus 
availability. This isn’t a binary decision; often, you can trade off a little consistency 
to get some availability. The resulting system would be neither perfectly 
consistent nor perfectly available—but would have a combination that is 
reasonable for 
your particular needs. 
 

 

5 CO2 L2 



5(b) 
 
 
 

ANS: 

Write a short note on 
i) Peer to Peer Consistency 
ii) Replication 
 
 Peer to Peer Consistency:  
 
Master-slave replication helps with read scalability but doesn’t help with 
scalability of writes. 
It provides resilience against failure of a slave, but not of a master. Essentially, the 
master is still a bottleneck and a single point of failure. Peer-to-peer replication ( 
Figure 1.3) attacks these problems by not having a master. All the replicas have 
equal weight, they can all accept writes, and the loss of any of them doesn’t 
prevent access to the data store. 
The prospect here looks mighty fine. With a peer-to-peer replication cluster, you 
can ride over node failures without losing access to data. Furthermore, you can 
easily add nodes to improve your performance. There’s much to like here but 
there are complications.The biggest complication is, again, consistency. When you 
can write to two different places, you run the risk that two people will attempt to 
update the same record at the same time a write-write conflict. Inconsistencies on 
read lead to problems but at least they are relatively transient. Inconsistent writes 
are forever. We’ll talk more about how to deal with write inconsistencies later on, 
but for the moment we’ll note a couple of broad options. At one end, we can 
ensure that whenever we write data, the Replicas coordinate to ensure we avoid a 
conflict. This can give us just as strong a guarantee as a master, albeit at the cost 
of network traffic to coordinate the writes. We don’t need all the replicas to agree 
on the write, just a majority, so we can still survive losing a minority of the replica 
nodes. At the other extreme, we can decide to cope with an inconsistent write. 
There are contexts when we can come up with policy to merge inconsistent writes. 
In this case we can get the full performance benefit of writing to any replica. 
These points are at the ends of a spectrum where we trade off consistency for 
availability. 
 
Diagram: 1 M 
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6(a) 
 
 
 

ANS: 

Highlight the significance of consistency in database systems and enumerate the 
various types of consistency that are commonly recognized within this context. 
 
 
Update Consistency: 
 
We’ll begin by considering updating a telephone number. Coincidentally, Martin 
and Pramod are looking at the company website and notice that the phone 
number is out of date. Implausibly, they both have update access, so they both go 
in at the same time to update the number. To make the example interesting, we’ll 
assume they update it slightly differently, because each uses a slightly different 
format. This issue is called a write-write conflict: two people updating the same 
data item at the same time. 
Approaches for maintaining consistency in the face of concurrency are often 
described as pessimistic or optimistic. A pessimistic approach works by preventing 
conflicts from occurring; an optimistic approach lets conflicts occur, but detects 
them and takes action to sort them out. For update conflicts, the most common 
pessimistic approach is to have write locks, so that in order to change a value you 
need to acquire a lock, and the system ensures that only one client can get a 
lock at a time. 
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Read Consistency: 
 
Having a data store that maintains update consistency is one thing, but it doesn’t 
guarantee that readers of that data store will always get consistent responses to 
their requests. Let’s imagine we have an order with line items and a shipping 
charge. The shipping charge is calculated based on the line items in the order. If 
we add a line item, we thus also need to recalculate and update the shipping 
charge. In a relational database, the shipping charge and line items will be in 
separate tables. The danger of inconsistency is that Martin adds a line item to his 
order, Pramod then reads the line items and shipping charge, and then Martin 
updates the shipping charge. This is an inconsistent read or read-write conflict. 
 
Relaxing Consistency: 
 
Consistency is a Good Thing but, sadly, sometimes we have to sacrifice it. It is 
always possible to design a system to avoid inconsistencies, but often impossible 
to do so without making unbearable sacrifices in other characteristics of the 
system. As a result, we often have to trade off consistency for something else. 
While some architects see this as a disaster, we see it as part of the inevitable 
trade-offs involved in system design. Furthermore, different domains have 
different tolerances for inconsistency, and we need to take this tolerance into 
account as we make our decisions. 
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6(b) 
 
 

ANS: 

Explain the read-write conflict in logical consistency with the proper example. 
 
 
Read Consistency: 
 
Having a data store that maintains update consistency is one thing, but it doesn’t 
guarantee that readers of that data store will always get consistent responses to 
their requests. Let’s imagine we have an order with line items and a shipping 
charge. The shipping charge is calculated based on the line items in the order. If 
we add a line item, we thus also need to recalculate and update the shipping 
charge. In a relational database, the shipping charge and line items will be in 
separate tables. The danger of inconsistency is that Martin adds a line item to his 
order, Pramod then reads the line items and shipping charge, and then Martin 
updates the shipping charge. This is an inconsistent read or read-write conflict: In 
Figure 2.1 Pramod has done a read in the middle of Martin’s write. 
We refer to this type of consistency as logical consistency: ensuring that different 
data items make sense together. To avoid a logically inconsistent read-write 
conflict, relational databases support the notion of transactions. Providing Martin 
wraps his two writes in a transaction, the system guarantees that Pramod will 
either read both data items before the update or both after the update. 
A common claim we hear is that NoSQL databases don’t support transactions and 
thus can’t be consistent. Such claim is mostly wrong because it glosses over lots of 
important details. Our first clarification is that any statement about lack of 
transactions usually only applies to some NoSQL databases, in particular the 
aggregate-oriented ones. In contrast, graph databases tend to support ACID 
transactions just the same as relational databases. 
Secondly, aggregate-oriented databases do support atomic updates, but only 
within a single aggregate. This means that you will have logical consistency within 
an aggregate but not between aggregates. So in the example, you could avoid 
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running into that inconsistency if the order, the delivery charge, and the line items 
are all part of a single order aggregate. 
This example of a logically inconsistent read is the classic example that you’ll see in 
any book that touches database programming. Once you introduce replication, 
however, you get a whole new kind of inconsistency. Let’s imagine there’s one last 
hotel room for a desirable event. The hotel reservation system runs on many 
nodes. Martin and Cindy are a couple considering this room, but they are 
discussing this on the phone because Martin is in London and Cindy is in Boston. 
Meanwhile Pramod, who is in Mumbai, goes and books that last room. That 
updates the replicated room availability, but the update gets to Boston quicker 
than it gets to London. When Martin and Cindy fire up their browsers to see if the 
room is available, Cindy sees it booked and Martin sees it free. This is another 
inconsistent read—but it’s a breach of a different form of consistency we call 
replication consistency: ensuring that the same data item has the same value 
when read from different replicas (see Figure 1.2). 
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