Scheme of Evaluation

Internal Assessment Test 1 — March 2024

vvvvvvvvvvvvvvv

ooooooooooooooooooooo

Sub: NoSQL Database Code: 18CS823
Max . .
Date: | 16/3/2024 Duration: | 90 mins | Marks: | 50 Sem: VIl Branch: ISE
Note: Answer Any five full guestions.
Question Description Marks Distribution Max
Marks
a) What is NoSQL? Explain about aggregate datal 10M
1 models with neat diagram. Considering example of]
Relational data models.
Definition NoSQL oM 10M
Diagram 3M
Explanation 5M
) a) Define materialized view. How are they 10M 10M
different from views? Briefly explain the two
main strategies to build materialized view
Define materialized view
Two approaches 2M
AM
Eager approach
ger app AM
Batch approach
a) Explain the data management and access in column 6M 10M
3 family data stores with example
Diagram 3M
Explanation 3M
b) Briefly describe the value of relational databases. oM 4M
Getting persistent data
3 Ing perst 1M
Concurrency
) 1M
Integration

a) What are distribution models? Briefly explain two 10M 10M
paths of data distribution. 1M
e 2M
Definition distribution models oM
Replication 3M
2M
Sharding
Explantion
Diagram
a) Identify the type of conflict in the following scenario,
How can it be solved? Alice and Bob share a
common Google sheet online. Both read a file. Alice
updates the document and forgets to save the file. On
the other hand Bob updates the sheet and saves the
file. The content updated by Alice overwritten by
Bob. The data updated by Alice is lost.
Write-write conflict oM
Locks used explanation with example 4M
AM
a) Explain briefly impedance mismatch, with a neat M 10M
diagram 5M
Diagram oM
explanation 3M
b) Use the above diagram and answer the following 1IM*1 5M
guestions.
Sraien in-levs 2o
1,7 s
//L"- tens oy C‘;.$ -~

C

¥ b
'ﬁ;c K" S ,hsten"
/{v\qﬁlf_‘_}}-” EO

@‘v .A::G\I": 5] hA—'

a) Who listens to rock music and works for D?

b) Who works for D and has married to colleagues?

c) Who listen to rock music?

d) How are A and S related to each other and also to C?

What are the genders of C and A?

Scheme Of Evaluation
Internal Assessment Test 1 —Mar 2024

Sub: NoSQL Database Code: 18CS823
Max . .
Date: | 16/3/2024 | Duration: | 90mins | Marks: | 50 | Sem: |VHI| Branch: ISE

Note: Answer Any full five questions

Q 1. What is NoSQL? Explain about aggregate data models with neat diagram. Considering example of
Relational data models.

NoSQL, also referred to as “not only SQL” or “non-SQL”, is an approach to database design that enables the
storage and querying of data outside the traditional structures found in relational databases.

Example of Relations and Aggregates At this point, an example may help explain what we’re talking about.
Let’s assume we have to build an e-commerce website; we are going to be selling items directly to customers
over the web, and we will have to store information about users, our product catalog, orders, shipping
addresses, billing addresses, and payment data. We can use this scenario to model the data using a relation data
store as well as NoSQL data stores and talk about their pros and cons. For a relational database, we might start
with a data model shown in Figure 2.1. Figure 2.1. Data model oriented around a relational database (using

UML notation

Customer
1 * 1
name Order
1
1
1
* * *
Order Payment Order Item
Billing 1 #
Address cardNumber price
txnld ———
e — *
1
Address Product
street Ko
city
state 1
post code shipping Address
-

Figure 2.1. Data model oriented around a relational database

Customer | *
Order
name
billing Address | 3%

Address * % | order payment
SFtreel 1 Order Item Payment
city &
state shipping Address price ccinfo
post code txnid

1| billing Address
1

Product

name

Figure 2.3. An aggregate data model

In this model, we have two main aggregates: customer and order. We’ve used the black-diamond composition
marker in UML to show how data fits into the aggregation structure. The customer contains a list of billing
addresses; the order contains a list of order items, a shipping address, and payments. The payment itself
contains a billing address for that payment. A single logical address record appears three times in the example
data, but instead of using IDs it’s treated as a value and copied each time. This fits the domain where we would
not want the shipping address, nor the payment’s billing address, to change. In a relational database, we would
ensure that the address rows aren’t updated for this case, making a new row instead. With aggregates, we can
copy the whole address structure into the aggregate as we need to. The link between the customer and the order
isn’t within either aggregate—it’s a relationship between aggregates. Similarly, the link from an order item
would cross into a separate aggregate structure for products, which we haven’t gone into. We’ve shown the
product name as part of the order item here—this kind of denormalization is similar to the tradeoffs with
relational databases, but is more common with aggregates because we want to minimize the number of
aggregates we access during a data interaction. The important thing to notice here isn’t the particular way we’ve
drawn the aggregate boundary so much as the fact that you have to think about accessing that data—and make
that part of your thinking when developing the application data model. Indeed we could draw our aggregate
boundaries differently, putting all the orders for a customer into the customer aggregate

Q. 2 a) Define materialized view. How are they different from views? Briefly explain the two main strategies to
build materialized view

Materialized Views

e To cope with this, materialized views were invented, which are views that are computed in
advance and cached on disk. Materialized views are effective for data that is read heavily but
can stand being somewhat stale.

e Although NoSQL databases don’t have views, they may have precomputed and cached queries,
and they reuse the term “materialized view” to describe them. Often, NoSQL databases create
materialized views using a map-reduce computation.

There are two strategies to building a materialized view

e The first is the eager approach, where you update the materialized view at the same time you
update the base data for it. In this case, adding an order would also update the purchase history
aggregates for each product.

e This approach is good when you have more frequent reads of the materialized view than you
have writes, and you want the materialized views to be as fresh as possible. The application
database approach is valuable here, as it makes it easier to ensure that any updates to base data
also update materialized views.

e If you don’t want to pay that overhead on each update, you can run batch jobs to update the
materialized views at regular intervals as per requirements.

e This approach is good when you have more frequent reads of the materialized view than you
have writes, and you want the materialized views to be as fresh as possible. The application
database approach is valuable here, as it makes it easier to ensure that any updates to base data
also update materialized views.

e If you don’t want to pay that overhead on each update, you can run batch jobs to update the
materialized views at regular intervals as per requirements.

e You can build materialized views outside the database by reading the data, computing the view,
and saving it back to the database.

e More often, databases will support building materialized views themselves.

e In this case, you provide the computation that needs to be done, and the database executes the
computation when needed according to some parameters that you configure. This is particularly
handy for eager updates of views with incremental map-reduce.

Q 3 a) Explain the data management and access in column family data stores with example

Column-Family Stores

One of the early and powerful NoSQL databases was Google’s BigTable, it is a two-level map.
It has been a model that influenced later databases such as HBase and Cassandra.

These databases with a BigTable-style data model are often referred to as column stores. The
thing that made them different was the way in which they physically stored data.

Most databases have a row as a unit of storage which, in particular, helps write performance.
However, there are many scenarios where writes are rare, but you often need to read a few
columns of many rows at once.

In this situation, it’s better to store groups of columns for all rows as the basic storage unit—which
is why these databases are called column stores.

BigTable and its next generation follow this notion of storing groups of columns (column fam-
ilies) together, we refer to this as column-family databases.

Column-family model is a two-level aggregate structure. As with key-value stores, the first key
is often described as a row identifier, picking up the aggregate of interest. The difference with
column-family structures is that this row aggregate is itself formed of a map of more detailed
values. These second-level values are referred to as columns. As well as accessing the row as a
whole, operations also allow picking out a particular column, so to get a particular customer’s
name from you could do something like get(’1234°, "name’).

Column-family databases organize their columns into column families. Each column has to be part
of a single column family, and the column acts as a unit for access, with the assumption that data for
a particular column family will usually be accessed together.

This also gives you a couple of ways to think about how the data is structured.

Row-oriented: Each row is an aggregate (for example, customer with the ID of 1234) with
column families representing useful chunks of data (profile, order history) within that aggregate.

Column-oriented: Each column family defines a record type (e.g., customer profiles) with rows
for each of the records. You then think of a row as the join of records in all column families.

column family column key

\ \ eolumr:<ue

profile name "martin®

billingAddress data ..

payment data ..

1234
/
ODR1001 data ..
row key ODR1002 data ..
ODR1003 data ..

orders ODR1004 data ..

Figure 5: Representing customer info in a column-family structure

e This latter aspect reflects the columnar nature of column-family databases. Since the database
knows about these common groupings of data, it can use this information for its storage and
access behaviour.

e (Cassandra uses the terms “wide’” and “‘skinny.”
e Skinny rows have few columns, with the same columns used across the many different rows.

e In this case, the column family defines a record type, each row is a record, and each column is
a field.

e A wide row has many columns (perhaps thousands), with rows having very different columns.

¢ A wide column family models a list, with each column being one element in that list.

Q. 3 b) Briefly describe the value of relational databases.

1.1 The Value of Relational Databases

Relational databases have become such an embedded part of our computing culture that

it’s easy to take them for granted. It’s therefore useful to revisit the benefits they provide.

1.1.1. Getting at Persistent Data

Probably the most obvious value of a database is keeping large amounts of persistent data.
Most computer architectures have the notion of two areas of memory: a fast volatile “main
memory” and a larger but slower “backing store.” Main memory is both limited in space
and loses all data when you lose power or something bad happens to the operating system.
Therefore, to keep data around, we write it to a backing store, commonly seen a disk

(although these days that disk can be persistent memory).

The backing store can be organized in all sorts of ways. For many productivity
applications (such as word processors), it’s a file in the file system of the operating system.
For most enterprise applications, however, the backing store is a database. The database
allows more flexibility than a file system in storing large amounts of data in a way that

allows an application program to get at small bits of that information quickly and easily.

1.1.2. Concurrency

Enterprise applications tend to have many people looking at the same body of data at once,
possibly modifying that data. Most of the time they are working on different areas of that
data, but occasionally they operate on the same bit of data. As a result, we have to worry
about coordinating these interactions to avoid such things as double booking of hotel

rooms.

Concurrency is notoriously difficult to get right, with all sorts of errors that can trap even
the most careful programmers. Since enterprise applications can have lots of users and
other systems all working concurrently, there’s a lot of room for bad things to happen.
Relational databases help handle this by controlling all access to their data through
transactions. While this isn’t a cure-all (you still have to handle a transactional error when
you try to book a room that’s just gone), the transactional mechanism has worked well to

contain the complexity of concurrency.

Transactions also play a role in error handling. With transactions, you can make a change,
and if an error occurs during the processing of the change you can roll back the transaction

to clean things up.

1.1.3. Integration

Enterprise applications live in a rich ecosystem that requires multiple applications, written
by different teams, to collaborate in order to get things done. This kind of inter-application
collaboration is awkward because it means pushing the human organizational boundaries.
Applications often need to use the same data and updates made through one application

have to be visible to others.

A common way to do this is shared database integration [Hohpe and Woolf] where
multiple applications store their data in a single database. Using a single database allows
all the applications to use each others’ data ecasily, while the database’s concurrency
control handles multiple applications in the same way as it handles multiple users in a

single application.

1.1.4. A (Mostly) Standard Model

Relational databases have succeeded because they provide the core benefits we outlined
earlier in a (mostly) standard way. As a result, developers and database professionals can
learn the basic relational model and apply it in many projects. Although there are
differences between different relational databases, the core mechanisms remain the same:
Different vendors’ SQL dialects are similar, transactions operate in mostly the same way.

Q. 4 a) What are distribution models? Briefly explain two paths of data distribution.

Distribution Models

The primary driver of interest in NoSQL has been its ability to run databases on a large cluster.
As data volumes increase, it becomes more difficult and expensive to scale up buy a bigger
server to run the database on. A more appealing option is to scale out run the database on a
cluster of servers. Aggregate orientation fits well with scaling out because the aggregate is a

natural unit to use for distribution.

Depending on your distribution model, you can get a data store that will give you the ability to
handle larger quantities of data, the ability to process a greater read or write traffic, or more

availability in the face of network slowdowns or breakages.

Broadly, there are two paths to data distribution: replication and sharding. Replication takes
the same data and copies it over multiple nodes. Sharding puts different data on different
nodes.Replication and sharding are orthogonal techniques: You can use either or both of them.
Replication comes into two forms: master-slave and peer-to-peer. We will now discuss these
techniques startingat the simplest and working up to the more complex: first single-server, then

master-slave replication,then sharding, and finally peer-to-peer replication.

In the ideal case, we have different users all talking to different server nodes. Each user only
has to talk to one server, so gets rapid responses from that server. The load is balanced out
nicely between servers—for example, if we have ten servers, each one only has to handle 10%

of'the load.

1.2 Sharding

Often, a busy data store is busy because different people are accessing different parts of the
dataset. In these circumstances we can support horizontal scalability by putting different parts of

the data ontodifferent servers a technique that’s called sharding (Figure 1.1).

Each shard reads and
writes its own data

Figure 1.1. Sharding puts different data on separate nodes, each of which does its own reads

N—

andwrites.

In the ideal case, we have different users all talking to different server nodes. Each user only
has to talk to one server, so gets rapid responses from that server. The load is balanced out

nicely between servers—for example, if we have ten servers, each one only has to handle 10%

of'the load.

1.3 Master-Slave Replication

With master-slave distribution, you replicate data across multiple nodes. One node is designated
as the master, or primary. This master is the authoritative source for the data and is usually
responsiblefor processing any updates to that data. The other nodes are slaves, or secondaries. A

replication process synchronizes the slaves with the master (Figure 1.2).

3 - v
ey ey

All updates are made to
the master

Slaves

Figure 1.2. Data is replicated from master to slaves. The master services all writes; reads

maycome from either master or slaves.

Master-slave replication is most helpful for scaling when you have a read-intensive dataset. You can scale
horizontally to handle more read requests by adding more slave nodes and ensuring that allread requests are
routed to the slaves. You are still, however, limited by the ability of the master to process updates and its ability
to pass those updates on. Consequently it isn’t such a good scheme fordatasets with heavy write traffic,
although offloading the read traffic will help a bit with handling thewrite load.

1.4 Peer-to-Peer Replication

Master-slave replication helps with read scalability but doesn’t help with scalability of writes.
It provides resilience against failure of a slave, but not of a master. Essentially, the master is
still a bottleneck and a single point of failure. Peer-to-peer replication (Figure 1.3) attacks these
problems by not having a master. All the replicas have equal weight, they can all accept writes,

andthe loss of any of themdoesn’t prevent access to the data store.

All nodes read and
write all data

ah vl
0 n \»

- b

Figure 1.3. Peer-to-peer replication has all nodes applying reads and writes to all the

data.

Q. 5 a) Identify the type of conflict in the following scenario, How can it be solved? Alice and Bob share a
common Google sheet online. Both read a file. Alice updates the document and forgets to save the file. On
the other hand Bob updates the sheet and saves the file. The content updated by Alice overwritten by
Bob. The data updated by Alice is lost.

This issue is called as write-write conflict: two people updating the same data item at the same time.
When the writes reach the server, the server will serialize them—decide to apply one, then the other.

In this case Alice’s is a lost update. Here the lost update is not a big problem, but often it is. We see this as a
failure of consistency because Bob’s update was based on the state before Alice’s update, yet was applied after
it. She forgot to save the file.

Approaches for maintaining consistency in the face of concurrency are often described as pessimistic or
optimistic. A pessimistic approach works by preventing conflicts from occurring; an optimistic approach lets
conflicts occur, but detects them and takes action to sort them out. For update conflicts, the most common
pessimistic approach is to have write locks, so that in order to change a value you need to acquire a lock, and
the system ensures that only one client can get a lock at a time.

So Alice and Bob would both attempt to acquire the write lock, but only Alice(the first one) would succeed.
Bob would then see the result of Bob’s write before deciding whether to make his own update.

There is another optimistic way to handle a write-write conflict—save both updates and record that they are in
conflict. This approach is familiar to many programmers from version control systems, particularly distributed
version control systems that by their nature will often have conflicting commits. The next step again follows
from version control: You have to merge the two updates somehow. Maybe you show both values to the user
and ask them to sort it out— this is what happens if you update the same contact on your phone and your
computer. Alternatively, the computer may be able to perform the merge itself; if it was a phone formatting
issue, it may be able to realize that and apply the new number with the standard format. Any automated merge
of write-write conflicts is highly domain-specific and needs to be programmed for each particular case.

Often, when people first encounter these issues, their reaction is to prefer pessimistic concurrency because they
are determined to avoid conflicts. While in some cases this is the right answer, there is always a tradeoff.
Concurrent programming involves a fundamental tradeoff between safety (avoiding errors such as update
conflicts) and liveness (responding quickly to clients). Pessimistic approaches often severely degrade the
responsiveness of a system to the degree that it becomes unfit for its purpose. This problem is made worse by
the danger of errors—pessimistic concurrency often leads to deadlocks, which are hard to prevent and debug.

Replication makes it much more likely to run into write-write conflicts. If different nodes have different copies
of some data which can be independently updated, then you’ll get conflicts unless you take specific measures to
avoid them. Using a single node as the target for all writes for some data makes it much easier to maintain
update consistency. Of the distribution models we discussed earlier, all but peer-to-peer replication do this.

Q. 6 a) Explain briefly impedance mismatch, with a neat diagram.

Solution

1D: 1001 \ orders
customer: Ann —\

line items:

customers
0321293533 | 2 | $48 | $96

0321601912 1 $39_| 839

\.\
order lines
0131495054 1 851\ $51
|
payment details: _.
Card: Amex
CC Number: 12345

expiry: 04/2001 \
NS

\-’ credit cards

Figure 1: An order, which looks like a single aggregate structure in the UI, is split into many rows
from many tables in a relational database

For Application developers using relational databases, the biggest frustration has been what’s
commonly called the impedance mismatch: the difference between the relational model and the
in-memory data structures. as show in Figure: 1

The relational data model organizes data into a structure of tables. Where a tuple is a set of
name-value pairs and a relation is a set of tuples.

The values in a relational tuple have to be simple—they cannot contain any structure, such as a
nested record or a list. This limitation isn’t true for in-memory data structures, which can take
on much richer structures than relations.

If you want to use a richer in-memory data structure, you have to translate it to a relational rep-
resentation to store it on disk. Hence, the impedance mismatch—two different representations
that require translation.

The impedance mismatch lead to relational databases being replaced with databases that repli-
cate the in- memory data structures to disk. That decade was marked with the growth of object-
oriented programming languages, and with them came object-oriented databases—both look-
ing to be the dominant environment for software development in the new millennium. How-
ever, while object-oriented languages succeeded in becoming the major force in programming,
object-oriented databases faded into obscurity.

Impedance mismatch has been made much easier to deal with by the wide availability of object
relational mapping frameworks, such as Hibernate and iBATIS that implement well-known
mapping patterns, but the mapping problem is still an issue.

Relational databases continued to dominate the enterprise computing world in the 2000s, but
during that decade, cracks began to open in their dominance.

Use the above diagram and answer the following questions.
/G\: Sralen |r|-1°\\,__1_2 S

a) Who listens to rock music and works for D?

b) Who works for D and has married to colleagues?

c) Who listen to rock music?

d) How are A and S related to each other and also to C?

e) What are the genders of C and A?

Ans:

a) C
b) E
c) C

A

d) A ismarried C and sister-in law to S
e) A-Female
f) C-Male

