

Scheme of Evaluation

Internal Assessment Test 1 – March 2024

Sub: NoSQL Database Code: 18CS823

Date: 16/3/2024 Duration: 90 mins
Max

Marks: 50
Sem: VIII Branch: ISE

Note: Answer Any five full questions.

Question

Description Marks Distribution Max

Marks

1
a) What is NoSQL? Explain about aggregate data

models with neat diagram. Considering example of

Relational data models.

Definition NoSQL

Diagram

Explanation

2M

3M

5M

10M

10M

2
a) Define materialized view. How are they

different from views? Briefly explain the two

main strategies to build materialized view

Define materialized view

Two approaches

Eager approach

Batch approach

2M

4M

4M

10M 10M

3

a) Explain the data management and access in column

family data stores with example

Diagram

Explanation

3M

3M

6M 10M

3

b)
Briefly describe the value of relational databases.

Getting persistent data

Concurrency

Integration

2M

1M

1M

4M

4

a) What are distribution models? Briefly explain two

paths of data distribution.

Definition distribution models

Replication

Sharding

Explantion

Diagram

1M

2M

2M

3M

2M

10M 10M

5

a) Identify the type of conflict in the following scenario,

How can it be solved? Alice and Bob share a

common Google sheet online. Both read a file. Alice

updates the document and forgets to save the file. On

the other hand Bob updates the sheet and saves the

file. The content updated by Alice overwritten by

Bob. The data updated by Alice is lost.

Write-write conflict

Locks used explanation with example

2M

4M

4M

6 a) Explain briefly impedance mismatch, with a neat

diagram 5M

Diagram

explanation

2M

3M

5M 10M

 b)
Use the above diagram and answer the following

questions.

a) Who listens to rock music and works for D?

b) Who works for D and has married to colleagues?

c) Who listen to rock music?

d) How are A and S related to each other and also to C?

What are the genders of C and A?

1M*1 5M

Scheme Of Evaluation

Internal Assessment Test 1 –Mar 2024

Sub: NoSQL Database Code: 18CS823

Date: 16/3/2024 Duration: 90mins
Max

Marks: 50
Sem: VIII Branch: ISE

Note: Answer Any full five questions

Q 1. What is NoSQL? Explain about aggregate data models with neat diagram. Considering example of

Relational data models.

NoSQL, also referred to as “not only SQL” or “non-SQL”, is an approach to database design that enables the

storage and querying of data outside the traditional structures found in relational databases.

Example of Relations and Aggregates At this point, an example may help explain what we’re talking about.

Let’s assume we have to build an e-commerce website; we are going to be selling items directly to customers

over the web, and we will have to store information about users, our product catalog, orders, shipping

addresses, billing addresses, and payment data. We can use this scenario to model the data using a relation data

store as well as NoSQL data stores and talk about their pros and cons. For a relational database, we might start

with a data model shown in Figure 2.1. Figure 2.1. Data model oriented around a relational database (using

UML notation

Figure 2.1. Data model oriented around a relational database

In this model, we have two main aggregates: customer and order. We’ve used the black-diamond composition

marker in UML to show how data fits into the aggregation structure. The customer contains a list of billing

addresses; the order contains a list of order items, a shipping address, and payments. The payment itself

contains a billing address for that payment. A single logical address record appears three times in the example

data, but instead of using IDs it’s treated as a value and copied each time. This fits the domain where we would

not want the shipping address, nor the payment’s billing address, to change. In a relational database, we would

ensure that the address rows aren’t updated for this case, making a new row instead. With aggregates, we can

copy the whole address structure into the aggregate as we need to. The link between the customer and the order

isn’t within either aggregate—it’s a relationship between aggregates. Similarly, the link from an order item

would cross into a separate aggregate structure for products, which we haven’t gone into. We’ve shown the

product name as part of the order item here—this kind of denormalization is similar to the tradeoffs with

relational databases, but is more common with aggregates because we want to minimize the number of

aggregates we access during a data interaction. The important thing to notice here isn’t the particular way we’ve

drawn the aggregate boundary so much as the fact that you have to think about accessing that data—and make

that part of your thinking when developing the application data model. Indeed we could draw our aggregate

boundaries differently, putting all the orders for a customer into the customer aggregate

Q. 2 a) Define materialized view. How are they different from views? Briefly explain the two main strategies to

build materialized view

Q 3 a) Explain the data management and access in column family data stores with example

Q. 3 b) Briefly describe the value of relational databases.

Q. 4 a) What are distribution models? Briefly explain two paths of data distribution.

Master-slave replication is most helpful for scaling when you have a read-intensive dataset. You can scale

horizontally to handle more read requests by adding more slave nodes and ensuring that allread requests are

routed to the slaves. You are still, however, limited by the ability of the master to process updates and its ability

to pass those updates on. Consequently it isn’t such a good scheme fordatasets with heavy write traffic,

although offloading the read traffic will help a bit with handling thewrite load.

Q. 5 a) Identify the type of conflict in the following scenario, How can it be solved? Alice and Bob share a

common Google sheet online. Both read a file. Alice updates the document and forgets to save the file. On

the other hand Bob updates the sheet and saves the file. The content updated by Alice overwritten by

Bob. The data updated by Alice is lost.

This issue is called as write-write conflict: two people updating the same data item at the same time.

When the writes reach the server, the server will serialize them—decide to apply one, then the other.

In this case Alice’s is a lost update. Here the lost update is not a big problem, but often it is. We see this as a

failure of consistency because Bob’s update was based on the state before Alice’s update, yet was applied after

it. She forgot to save the file.

Approaches for maintaining consistency in the face of concurrency are often described as pessimistic or

optimistic. A pessimistic approach works by preventing conflicts from occurring; an optimistic approach lets

conflicts occur, but detects them and takes action to sort them out. For update conflicts, the most common

pessimistic approach is to have write locks, so that in order to change a value you need to acquire a lock, and

the system ensures that only one client can get a lock at a time.

So Alice and Bob would both attempt to acquire the write lock, but only Alice(the first one) would succeed.

Bob would then see the result of Bob’s write before deciding whether to make his own update.

There is another optimistic way to handle a write-write conflict—save both updates and record that they are in

conflict. This approach is familiar to many programmers from version control systems, particularly distributed

version control systems that by their nature will often have conflicting commits. The next step again follows

from version control: You have to merge the two updates somehow. Maybe you show both values to the user

and ask them to sort it out— this is what happens if you update the same contact on your phone and your

computer. Alternatively, the computer may be able to perform the merge itself; if it was a phone formatting

issue, it may be able to realize that and apply the new number with the standard format. Any automated merge

of write-write conflicts is highly domain-specific and needs to be programmed for each particular case.

Often, when people first encounter these issues, their reaction is to prefer pessimistic concurrency because they

are determined to avoid conflicts. While in some cases this is the right answer, there is always a tradeoff.

Concurrent programming involves a fundamental tradeoff between safety (avoiding errors such as update

conflicts) and liveness (responding quickly to clients). Pessimistic approaches often severely degrade the

responsiveness of a system to the degree that it becomes unfit for its purpose. This problem is made worse by

the danger of errors—pessimistic concurrency often leads to deadlocks, which are hard to prevent and debug.

 Replication makes it much more likely to run into write-write conflicts. If different nodes have different copies

of some data which can be independently updated, then you’ll get conflicts unless you take specific measures to

avoid them. Using a single node as the target for all writes for some data makes it much easier to maintain

update consistency. Of the distribution models we discussed earlier, all but peer-to-peer replication do this.

Q. 6 a) Explain briefly impedance mismatch, with a neat diagram.

Q. 6 b) Use the above diagram and answer the following questions.

a) Who listens to rock music and works for D?

b) Who works for D and has married to colleagues?

c) Who listen to rock music?

d) How are A and S related to each other and also to C?

e) What are the genders of C and A?

Ans:

a) C

b) E

c) C, A

d) A is married C and sister-in law to S

e) A-Female

f) C-Male

