

IAT 2 – July 2024 Scheme & Solution

Date: 10/07/2024 Duration: 90 min's Max Marks: 50 Sem / Sec: IV/A, B, C				
				OBE
Answer any FIVE FULL QUESTIONS	MAR	KS	CO	RBT
Define topological sorting. Illustrate the topological sorting using DFS method for thefollowing graph.	[10	D]	CO2	L2
Defination: - [2 Marks] Algorithm: - [4 Marks] Solution:-[4 Marks]				
Answer:- Topological sort is a fundamental algorithm used in directed acyclic graphs(DAGs).				
Topological sorting is a way to arrange a collection of tasks or events in such a sequence that each task comes before the tasks that depend on it.				
In simple words, it helps you determine the order in which you should perform a set of related tasks, ensuring that you don't start a task until all its prerequisites or dependencies are completed.	,			
Algorithm:-				
L -> An empty list that will contain the sorted elements				
S -> A set of all vertices with no incoming edges (i.e., having indegree 0)				
while S is non-empty do remove a vertex n from S add n to tail of L for each vertex m with an edge e from n to m do remove edge e from the graph if m has no other incoming edges, then insert m into S insert m into S				
if graph has edges then return report "graph has at least one cycle"				
else				
return L "a topologically sorted order"				

	Step 5 3 6 1 Co 4. Total might = 10			
	Steps 3 b 1 0 Total muight = 5 This is the required MST			
	Total weight is 15 (1+2+3+4+5)			
3	Find the optimal solution of the knapsack instance is using dynamic programming n=7, M=15, (P1,P2,,P7)=(10,5,15,7,6,18,3) and (w1,w2,,w7)=(2,3,5,7,1,4,1) Algorithm: - [5 Marks] Solution step by step:-[5 Marks] Answer: - Algorithm	[10]	CO4	L3

```
for (i\leftarrow 0 \text{ to } n) do
       for (j\leftarrow 0 \text{ to } W) do
         table[i,0]=0 // table initialization
         table[0,j]=0
     for (i\leftarrow 0 \text{ to } n) do
      for (j\leftarrow 0 \text{ to } W) do
        if(j \le w[i]) then
         table[i,j] \leftarrow table[i-1,j]
        else if(j>=w[i]) then
         table[i,j] \leftarrow max (table[i-1,j],(v[i]+table[i-1,j-w[i]]))
     return table[n,W]
To solve this problem, we use some strategy to determine the fraction of weight which should be
included so as to maximize the profit and fill the Knapsack..
(X1, X2, X3, X4, X5, X6, X7)
                                    ∑WiXi ∑PiXi
(1) (1/2,1/3,1/4,1/5,1/6,1/7,1/8)
                                    5.51 15.76
Now taking maximum profit 18 with weight 4 as -
X6 = 1, \sum WiXi < m.
(2) (1/2,1/3,1/4,1/5,1/6,1,1/8) 8.51 31.19
(3) (1/2,1/3,1,1/5,1/6,1,1/8) 12.69 42.44
(4) ) (1,1/3,1,1/5,1/6,1,1/8) 13.69 47.44
(5) (1,1/3,1,1/5,1,1,1/8) 14.52 52.44
                           15 54.67
(6) (1,1/3,1,1/5,1,1,1)
(7) (1,2/3,1,0,1,1,1)
                         15 55.33
at each step, we try to get the maximum profit. The maximum profit we set by step (7) taking
X1 = 1, X2 = 2/3, X3 = 1, X4 = 0, X5 = 1, X6 = 1, and X7 = 1
These fraction of weight provided maximum profit.
Write heap sort algorithm. Sort the given list of numbers using heap sort: 2, 9, 7, 6, 5, 8.
                                                                                                          [10]
                                                                                                                  CO<sub>3</sub>
                                                                                                                           L2
Algorithm: - [5 Marks]
Solution step by step:-[5 Marks]
Answer: -
```

```
Algorithm HeapBottomUp(H[1..n])
//Constructs a heap from the elements of a given array
// by the bottom-up algorithm
//Input: An array H[1..n] of orderable items
//Output: A heap H[1..n]
for i \leftarrow \lfloor n/2 \rfloor downto 1 do
    k \leftarrow i; \quad v \leftarrow H[k]
    heap \leftarrow \mathbf{false}
    while not heap and 2*k \leq n do
            j \leftarrow 2 * k
            if j < n //there are two children
                \text{if } H[j] < H[j+1] \quad \  j \leftarrow j+1
            if v \geq H[j]
                   heap \leftarrow true
            else H[k] \leftarrow H[j]; \quad k \leftarrow j
     H[k] \leftarrow v
```

Example of Heap Construction

Construct a heap for the list 2, 9, 7, 6, 5, 8

Heapsort

Stage 1: Construct a heap for a given list of *n* keys

Stage 2: Repeat operation of root removal *n*-1 times:

- Exchange keys in the root and in the last (rightmost) leaf
- Decrease heap size by 1
- If necessary, swap new root with larger child until the heap condition holds

Sort the list 2, 9, 7, 6, 5, 8 by h	eansort			
501 the list 2, 7, 7, 0, 3, 0 by h	capsort.			
Stage 1 (heap construction)	Stage 2 (root/max removal)			
2 9 7 6 5 8	9 6 8 2 5 7			
2 9 8 6 5 7	7 6 8 2 5 9			
2 9 8 6 5 7	8 6 7 2 5 9			
9 2 8 6 5 7	5 6 7 2 8 9			
9 6 8 2 5 7	7 6 5 2 8 9			
	2 6 5 7 8 9			
	6 2 5 7 8 9			
	5 2 6 7 8 9			
	5 2 6 7 8 9			
	2 5 6 7 8 9			
	•			
Apply Dijkstra's algorithm to fi	nd single source shortest nath for the given graph by	[10]	CO4	l
	nd single source shortest path for the given graph by ex.	[10]	CO4	
Apply Dijkstra's algorithm to fi considering S as the source vert		[10]	CO4	
	ex.	[10]	CO4	
	ex. a 2 C 1 3 e 5 b 2 d 2	[10]	CO4	
Algorithm: - [5 Marks] Solution step by step:-[5 Marks]	ex. a 2 C 1 3 e 5 b 2 d 2	[10]	CO4	
considering S as the source vert Algorithm: - [5 Marks] Solution step by step:-[5 Marks] Answer: - Dijkstra Algorithm- dist[S] \leftarrow 0 // The distance to source v $\Pi[S] \leftarrow$ NIL // The predecessor of source volumes of the solution of th	ex. 2 C 1 3 e 2 C 1 C 1		CO4	
Algorithm: - [5 Marks] Solution step by step:-[5 Marks] Answer: - Dijkstra Algorithm- dist[S] \(\infty \) 0 // The distance to source v II[S] \(\infty \) NIL // The predecessor of sor for all v \(\infty \) - \(\sc{S} \) // For all other vert do dist[v] \(\infty \) // All other distances a II[v] \(\infty \) NIL // The predecessor of all S \(\infty \) // NIL // The predecessor of all S \(\infty \) // The set of vertices that have Q \(\infty \) // The queue 'Q' initially conta while Q \(\neq \theta \) // While loop executes till	ertex is set to 0 ertex is set to 0 erce vertex is set as NIL ices re set to ∞ other vertices is set as NIL been visited 'S' is initially empty ins all the vertices		CO4	

Step-01:

The following two sets are created-

Unvisited set: {S, a, b, c, d, e}

Visited set : { }

Step-02:

The two variables \$\Pi\$ and d are created for each vertex and initialized as-

•
$$\Pi[S] = \Pi[a] = \Pi[b] = \Pi[c] = \Pi[d] = \Pi[e] = NIL$$

$$d[S] = 0$$

$$d[a] = d[b] = d[c] = d[d] = d[e] = \infty$$

Step-03:

Vertex 'S' is chosen.

This is because shortest path estimate for vertex 'S' is least.

The outgoing edges of vertex 'S' are relaxed.

Before Edge Relaxation-

Now,

•
$$d[S] + 1 = 0 + 1 = 1 < \infty$$

$$\therefore d[a] = 1 \text{ and } \Pi[a] = S$$

•
$$d[S] + 5 = 0 + 5 = 5 < \infty$$

$$\therefore$$
 d[b] = 5 and Π [b] = S

After edge relaxation, our shortest path tree is-

Now, the sets are updated as-

Unvisited set: {a,b,c,d,e}

• Visited set : {S}

Step-04:

- · Vertex 'a' is chosen.
- This is because shortest path estimate for vertex 'a' is least.
- · The outgoing edges of vertex 'a' are relaxed.

Before Edge Relaxation-

Now,

d[a] + 2 = 1 + 2 = 3 < ∞
 ∴ d[c] = 3 and Π[c] = a

d[a] + 1 = 1 + 1 = 2 < ∞

 \therefore d[d] = 2 and Π [d] = a

d[b] + 2 = 1 + 2 = 3 < 5

 $\therefore d[b] = 3 \text{ and } \Pi[b] = a$

After edge relaxation, our shortest path tree is-

Now, the sets are updated as-

Unvisited set: {b, c, d, e}

Visited set: {S, a}

Step-05:

Vertex 'd' is chosen.

· This is because shortest path estimate for vertex 'd' is least.

· The outgoing edges of vertex 'd' are relaxed.

Before Edge Relaxation-

Now,

d[d] + 2 = 2 + 2 = 4 < ∞

 $\therefore d[e] = 4 \text{ and } \Pi[e] = d$

After edge relaxation, our shortest path tree is-

Now, the sets are updated as-

Unvisited set: {b, c, e}

Visited set: {S, a, d}

Step-06:

Vertex 'b' is chosen.

This is because shortest path estimate for vertex 'b' is least.

Vertex 'c' may also be chosen since for both the vertices, shortest path estimate is least.

· The outgoing edges of vertex 'b' are relaxed.

Before Edge Relaxation-

Now,

$$d[b] + 2 = 3 + 2 = 5 > 2$$

∴ No change

After edge relaxation, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

Unvisited set: {c, e}

Visited set : {S, a, d, b}

Step-07:

- Vertex 'c' is chosen.
- This is because shortest path estimate for vertex 'c' is least.
- The outgoing edges of vertex 'c' are relaxed.

Before Edge Relaxation-

Now,

- d[c] + 1 = 3 + 1 = 4 = 4
- : No change

After edge relaxation, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

- Unvisited set: {e}
- Visited set: {S,a,d,b,c}

Step-08:

- · Vertex 'e' is chosen.
- · This is because shortest path estimate for vertex 'e' is least.
- The outgoing edges of vertex 'e' are relaxed.
- There are no outgoing edges for vertex 'e'.
- So, our shortest path tree remains the same as in Step-05.

Now, the sets are updated as-

- Unvisited set : { }
- Visited set: {S, a, d, b, c, e}

Now,

- All vertices of the graph are processed.
- · Our final shortest path tree is as shown below.
- · It represents the shortest path from source vertex 'S' to all other remaining vertices.

Shortest Path Tree

The order in which all the vertices are processed is:

S, a, d, b, c, e.

6 Apply Floyd's algorithm to find all pair shortest path for the graph given [10] CO4 below.

L3

Algorithm: - [5 Marks]

Solution step by step:-[5 Marks]

Answer: -

Floyds Algorithm

```
Create a |V| \times |V| matrix // It represents the
distance between every pair of vertices as given
For each cell (i,j) in M do-
   if i = = j
     M[i][j] = 0 // For all diagonal
elements, value = 0
   if (i , j) is an edge in E
     M[i][j] = weight(i,j) // If there exists a direct
edge between the vertices, value = weight of edge
   else
for k from 1 to |V|
   for i from 1 to |V|
      for j from 1 to |V|
         if M[i][j] > M[i][k] + M[k][j]
         M[i][j] = M[i][k] + M[k][j]
```

Step-01:

- Remove all the self loops and parallel edges (keeping the lowest weight edge) from the graph.
- In the given graph, there are neither self edges nor parallel edges.

Step-02:

Write the initial distance matrix

- It represents the distance between every pair of vertices in the form of given weights.
- For diagonal elements (representing self-loops), distance value = 0.
- For vertices having a direct edge between them, distance value = weight of that edge.
- For vertices having no direct edge between them, distance value = ∞ . Initial distance matrix for the given graph is-

$$D_0 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 8 & \infty & 1 \\ 0 & 0 & 1 & \infty \\ 4 & 0 & 0 & \infty \\ 4 & 0 & 0 & \infty \end{bmatrix}$$

Step-03:

Using Floyd Warshall Algorithm, write the following 4 matrices-

$$D_{2} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 8 & 9 & 1 \\ 2 & 0 & 0 & 1 & \infty \\ 4 & 12 & 0 & 5 \\ 4 & \infty & 2 & 3 & 0 \end{bmatrix}$$

$$D_{4} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 1 \\ 2 & 5 & 0 & 1 & 6 \\ 4 & 7 & 0 & 5 \\ 4 & 7 & 2 & 3 & 0 \end{bmatrix}$$

Step-04: Step-05:

