IAT 2 — July 2024 Scheme & Solution

Sub: |Analysis & Design of Algorithms Sub Code: | BCS401 ‘ Branch: ‘ ISE
Date: | 10/07/2024 | Duration: | 90 min’s | Max Marks: | 50 | Sem/Sec: | IV/A, B, C OBE
Answer any FIVE FULL QUESTIONS MARKS | CO |RBT
1 [Define topological sorting. Illustrate the topological sorting using DFS method for thefollowing| [10] |CO2 | L2

graph.

Defination: - [2 Marks]
Algorithm: - [4 Marks]
Solution:-[4 Marks]

Answer :-
Topological sort is a fundamental algorithm used in directed acyclic graphs(DAGS).

'Topological sorting is a way to arrange a collection of tasks or events in such a sequence that each task
comes before the tasks that depend on it.

In simple words, it helps you determine the order in which you should perform a set of related tasks,
ensuring that you don’t start a task until all its prerequisites or dependencies are completed.

Algorithm:-

L —» An empty list that will contain the sorted elements

S —> A set of all vertices with no incoming edges (i.e., having indegree )

while S is non-empty do
remove a vertex n from S
add n to tail of L
for each vertex m with an edge e from n to m do
remove edge e from the graph
if m has no other incoming edges, then insert m into S

insert m into S

if graph has edges then

return report ©

graph has at least one cycle”
else

return L “a topologically sorted order”




It’s like making sure you can’t bake a cake until you have all the necessary ingredients and utensils
ready, one step at a time. Topological sorting is widely used in project scheduling, building software
with dependencies, and more.

It helps to avoid cycles and ensures a valid sequence.
For every directed edge u —> v, u comes before v in the ordering. For example, the pictorial
representation of the topological order [7, 5, 3, 1, 4, 2, 0, 6] is:

<D, GOOG

Topological Order

Write Kruskal algorithm and construct minimum cost spanning tree for the following graph.

Algorithm: - [5 Marks]
Solution step by step:-[5 Marks]

ANswer: -
EEEX] Algorithm

Algorithm spanning_tree()
//Problem Description : This algorithm finds the minimum
//spanning tree using Kruskal's algorithm
/fInput | The adjacency matrix graph G containing cost
//Output : prints the spanning tree with the total cost of
//spanning tree
count<0
ke0
sum«—0
for i«0 to tot_nodes do
Pparent[i]«i
while{count!=tot nodes—1)do
{
pos—Minimum(tot_edges).//finding the minimum cost edge
if(pos=—1)then//Perhaps no node in the graph
break
v1le—G[pos].vl
w2« Glpos].va2
i« Find(vl,parent)
j«Find(v2, parent) — - -
=i is an array in
S whicL]tL]e spanningytree
edges are stored.

tree[k][0] «wv1l
/fstoring the minimum edge in array tree[]

tree[k][1] «—wv2

k++

count+ +;

sum+«G[pos].cost Computing total cost
Hfacemmnlating the ratal cnast af VST Of ‘.".’“ the minimum

[10]

CO4

L3




7

Totad Wesigh/ = 1.




Total weight is 15 (1+2+3+4+5)

Find the optimal solution of the knapsack instance is using dynamic programming n=7, M=15,
(P1,P2,.....,P7)=(10,5,15,7,6,18,3) and (w1,w2,.....,w7)=(2,3,5,7,1,4,1)

Algorithm: - [5 Marks]

Solution step by step:-[5 Marks]
Answer: -

Algorithm

[10]

CO4

L3




for (i<0 to n) do

{
for (j«0 to W) do

{

table[i,0]=0 // table initialization
table[0,j]=0
}

}
for (i<0 to n) do

{
for (j<0 to W) do

{
if(j<wli]) then
tableli,j]< tableli-1,j]
else if(j>=wl/i]) then
tablel[i,j]< max (table[i-1,j],(v[i] +table[i-1,j-wli]]) )
}
}

return table[n, W]

included so as to maximize the profit and fill the Knapsack..
(X1, X2, X3, X4, X5, X6, X7) YWiXi  YPiXi

(1) (1/2,1/3,1/4,1/5,1/6,1/7,1/8) 5,51 15.76

Now taking maximum profit 18 with weight 4 as -

X6=1,> WiXi<m.

(2) (1/2,1/3,1/4,1/5,1/6,1,1/8) 851 3119

(3) (1/2,1/3,1,1/5,1/6,1,1/8) 12.69 42.44

(4)) (1,1/3,1,1/5,1/6,1,1/8) 13.69 47.44

(5) (1,1/3,1,1/5,1,1,1/8) 1452 52.44

(6) (1,1/3,1,1/5,1,1,1) 15 54.67

(7) (1,2/3,1,0,1,1,1) 15 5533

at each step, we try to get the maximum profit. The maximum profit we set by step (7) taking
X1=1,X2=2/3,X3=1,X4=0,X5=1, X6 =1, and X7=1

These fraction of weight provided maximum profit.

To solve this problem, we use some strategy to determine the fraction of weight which should be

'Write heap sort algorithm.Sort the given list of numbers using heap sort: 2,9, 7, 6,5, 8.

Algorithm: - [5 Marks]
Solution step by step:-[5 Marks]

Answer: -

(10]

CO3

L2




Algorithm HeapBottomUp(H[1..n])
S/ Clonstructs a heap from the elements of a given array
/by the bottom-up algorithm
S/ Input: An array H[l..n] of orderable items
S/Output: A heap H[l..n]
for i +— |n/2| downto 1 do
k1 v+ H[E]
heap +— false
while not heap and 2+ k& < n do
F—2=xk
if 7 <n //there are two children
if 7] < H[7+1 7+ 3+1
if v = H[j]
heap +— true
else H[Ek] «— H[j], ki
Hk] — v

Example of Heap Construction

Construct a heap for the list 2,9, 7,6, 5, 8

Heapsort

Stage 1: Construct a heap for a given list of n keys

Stage 2: Repeat operation of root removal n-1 times:

— Exchange keys in the root and in the last
(rightmost) leaf

— Decrease heap size by 1

— If necessary, swap new root with larger child until
the heap condition holds




Example of Sorting by Heapsort
Sort the list 2, 9, 7, 6, 5, 8 by heapsort

Stage 1 (heap construction) Stage 2 (root/max removal)

297658 968257
298657 768259
298657 867259
928657 567 2(809
968257 7652|809
265789
6257809
5206789
5206789
2156789

considering S as the source vertex.

Algorithm: - [5 Marks]
Solution step by step:-[5 Marks]

ANnswer: -

Dijkstra Algorithm-

dist[S] « 0 // The distance to source vertex is set to 0

I1[S] «— NIL // The predecessor of source vertex is set as NIL

for all v € V - {S} // For all other vertices

do dist[v] «— o // All other distances are set to o«

11[v] «= NIL // The predecessor of all other vertices is set as NIL

S « @ // The set of vertices that have been visited 'S is initially empty

Q « V // The queue 'Q' initially contains all the vertices

while Q # @ // While loop executes till the queue is not empty

do u « mindistance (Q, dist) // A vertex from Q with the least distance is selected
S «— S U {u} // Vertex "u' is added to 'S' list of vertices that have been visited
for all v € neighbors[u] // For all the neighboring vertices of vertex 'u'

do if dist[v] > dist[u] + w(u,v) // if any new shortest path is discovered

then dist[v] « dist[u] + w(u,v) // The new value of the shortest path is selected
return dist

Apply Dijkstra’s algorithm to find single source shortest path for the given graph by

[10]

CO4

L2




Step-01:

The following two sets are created-
v Unvisited set: {S.,a,b,c,d,e}
b Visited set ;{1

Step-02:

The two variables [1 and d are created for each vertex and initialized as-

\ TI[S] = M[a] = M[b] = M[c] = M[d] = M[e] = NIL
+ - d[a] =d[b] = d[c] = d[d] = d[¢] = =

Step-03:
v Vertex ‘S" 1s chosen.

This is because shortest path estimate for vertex *5° is least.
+  The outgoing edges of vertex *S’ are relaxed.

TGRS M — LRt et

Before Edge Relaxation-

Now,

« d[S]+1=0+1=1<w
~d[a]=1andII[a]=8

« d[S]+5=0+5=5<w
~d[b] =5 and I1[b] =8

After edge relaxation, our shortest path tree is-




Now, the sets are updated as-

« Unvisitedset: {fa,b,c,d,e}
« Visited set : {S}

Step-04:

« Vertex ‘a’ is chosen.
« This is because shortest path estimate for vertex *a’ is least.
s The outgoing edges of vertex “a’ are relaxed.

Belore Edge Relaxation-

MNow

« dlaj]+2=1+2=3<x
sdle]= 3 and Mc] = a

« dlaltl=1+1=2<w

= d[d] =2 and MN[d] =a
. db]+2=1+2=3<5
& d[b] =3 and M[b]=a

After edge relaxation, our shortest path tree is-

Now, the sets are updated as-




« Unvisited set: {b.c.d, e}

o  Visiled set: |5, a)

o Verex “d” s chosen,

» This is because shortest path estimate for veriex “d" is least,
«  The owtgoing edges of vertex “d” are relaxed,

Before Edpe Relaxation-
[
2
2
Mow,

. dd]+2=242=4<w
~dle] =4 and l[e] =d

After edge relaxation, our shortest path tree is-

Now, the sets are updated as-

= Unvisited set: [b.c, e}
« Vised set: [5.a,d}
ol H
« Verex 'b° is chosen,
» This is because shortest path estimate for vertex “b" is least,
= Vertex ‘¢’ may aleo be chosen smee for both the vertices, shortest path estimie = least
« The outgoing cdges of vertex *b" are relaxed.

Before Edpe Relaxation-

H

3 2
MNow,

dib]+2=3+2=5>2
& Mo change

After edge relaxation, our shortest path tree remains the same as in Step-03.
Now, the sets ore updated as-

«  Unvisited set : [, e)
o Visitedset {S,a,d, b




S1ep-07:
W Venex ‘¢’ is chosen.

e This is because shorlest path estimate for veriex “c” is least,
b The owtgoing edges of vertex “¢” are relaxed.

Before Edge Relaxation-

3
1
4
MNow,
» dig] ¥ 1=3+1=4=4
& Mo change

Afier edge relaxation, our shoriest path tree remains the same as in Step-03.
Mow, the sets are updated as-

«  LUnvisited set ; je)
« Visited set: (5,a,d,.b, ¢}

Step-08:

o Vertex ‘e’ is chosen.

« This 1s because shortest path estimate for vertex ‘e’ is least,

« The outgoing edges of vertex ‘e” are relaxed.

« There are no outgoing edges for vertex ‘¢’

+ So, our shortest path tree remains the same as in Step-05
Now, the sets are updated as-

« Unvisitedset: |}
« Visitedset: |[S,a,d,b,c,e}
Now.,

« All vertices of the graph are processed
o Owr final shortest path trec 1s as shown below
« It represents the shortest path from source vertex ‘S’ 10 all other remaining vertices.

Shortest Path Tree

The order in which all the vertices are processed is :

S,a,d,b,c,e

Apply Floyd's algorithm to find all pair shortest path for the graph given
below.

(10]

CO4

L3




/Algorithm: - [5 Marks]
Solution step by step:-[5 Marks]

Answer: -
Floyds Algorithm
Create a |V| x |V| matrix // It represents the

distance between every pair of vertices as given

For each cell (i,j) in M do-

M[ 1 ][ 3 =0 // For all diagonal

]
elements, value 0

if (i , j) 1is an edge in E

M[ i ][ jJ 1 = weight(i,]) // If there exists a direct
edge between the vertices, value = weight of edge

else

M[ 1 ][ J ] = infinity // If there is no direct
cedge between the vertices, value = <«

for k from 1 to |V|
for 1 from 1 to |V]|

for j from 1 to |V]

Step-01:

« Remove all the self loops and parallel edges (keeping the lowest weight
edge) from the graph.

« In the given graph, there are neither self edges nor parallel edges.

Step-02:




\Write the initial distance matrix

o It represents the distance between every pair of vertices in the form of
given weights.

« For diagonal elements (representing self-loops), distance value = 0.

e For vertices having a direct edge between them, distance value = weight
of that edge.

« For vertices having no direct edge between them, distance value = «.
Initial distance matrix for the given graph is-

1 2 3 a4
1 [ 0 8 e 1 |
D, = 2 ©© @ 1 ©°
3 4 = 0 <©
a | = 2 9 o0 |
Step-03:

Using Floyd Warshall Algorithm, write the following 4 matrices-

_____________

=]
()
n
E T T I
1
& &, 8'o
ey =
X} = 1= 1
1 \\JI
.-
W O = am
1
'
= ey -y
1

L
i 0 B9 i1
5 00146
5 - 2| 5 0311368
3 3|4 42:0°5
_______ Le-a L
4l 7 230




The last matrix D4 represents the shortest path distance between every pair of
\vertices.

Obtain the Huffman tree and the code for the following data and apply algorithm

Character a e i 0 u S t
Count 10 15 12 3 4 13 1

Algorithm: - [5 Marks]
Solution step by step:-[5 Marks]

ANnswer: -

Step-01:

sYcNoNcRcNeNe

;Q(@@Q@@

® 000

[10]

CO4

L2




Step-04:




Step-07-

Huffman Tree




Huffman Tree

Following this rule, the Huffman Code for each character is-

= a=11

+ =2=10
=00

= o=11001

s u=1101

= z2=01

t= 11000




