

USN

Internal Assessment Test 2 – July 2024

 Sub Full Stack Development
Sub

code
21CS62 Branch CSE

 Date 08.07.2024 Duration 90 mins Max Marks 50
Sem

/Sec
VI Sem (B, C) OBE

Answer any FIVE FULL Questions
MAR

KS

CO RBT

1(a) Explain the various features of Django Administration website with the example? (min 5)

[5] CO2 L2

1(b) Explain any five customization commands with a suitable example for the model given below.

Student (Stud_usn, Stud_name, Sem, marks). Incorporate customization commands in the

program?

[5] CO2 L2,L3

2 You have a Student model with fields stud_usn, stud_name, sem, and marks. Create a model form

for the Student model and add custom validation to ensure that the sem field is between 1 and 8.

Explain how to implement the custom validation in the form and provide code snippets for the

model, form, and validation method.

[10] CO2 L2,L3

3 Explain how to include URL configurations from two different Django apps, students and
courses, in the main project's urls.py file. Provide code snippets for the urls.py files in
both the apps and the main project, and describe the benefits of organizing URLs in this
manner.

[10] CO2 L2

4 Explain what are the principal advantage of Generic view in Django. Explain the Class based

views and their types with example.

10 CO3 L2

5 How would you customize the ModelForm to include additional fields that are not part of the

Customer model?

10 CO2 L3

6(a) Write a python function for validating the mobile number with validation condition as 10 digits,

‘should not start with 0, + can be at the beginning.

5 CO2 L2

6(b) Describe how to use Django's generic ListView to display a list of items from a model named Post

with fields title, content, and published_date. Provide the necessary code snippets for the model,

view, URL configuration, and template.

5 CO2 L2

CI CCI HOD

Internal Assessment Test 2

Solution

Sub: Full Stack Development
Sub

Code:
21CS62

Branch

:
CSE

Date: 8/7/2024 Duration: 90 mins
Max

Marks:
50

Sem /

Sec:
VI- B & C

Question
number

Question and solution

1

a)Explain the various features of the Django Administration website with the

example? (min 5)

Solution:

Here are five key features of the Django admin interface, illustrated with examples:

1. User Authentication and Permissions

Feature: Django admin provides a built-in user authentication system. This allows

administrators to create, manage, and assign permissions to users.

Example:

● Creating Users: Admins can create new user accounts and set their passwords.

● Assigning Permissions: Admins can assign different permissions to users, such as

viewing, adding, changing, or deleting data.

● Groups: Users can be assigned to groups, and permissions can be assigned to

groups, making it easier to manage permissions for multiple users.

2. Model Management

Feature: The admin site automatically generates a management interface for any model

registered with it. This includes creating, updating, and deleting records.

3. Customizing Admin Interface

Feature: Django allows extensive customization of the admin interface to tailor it to

specific needs.

Example:

● Custom Admin Class: Customizing the admin interface for a model by using a

ModelAdmin class.

admin.py

from django.contrib import admin

from .models import Author

class AuthorAdmin(admin.ModelAdmin):

 list_display = ('name', 'email')

 search_fields = ('name',)

admin.site.register(Author, AuthorAdmin)

4. Filter and Search Capabilities

Feature: The admin interface provides filtering and searching capabilities to make it

easier to find specific records.

Example:

● List Filter: Adding filters to the list view to filter records based on specific fields.

● Search Fields: Adding search functionality to quickly locate records.

5. Custom Actions

Feature: Django admin allows the creation of custom actions that can be performed on

multiple records at once. This can be used to perform batch updates or other operations.

Example:

● Custom Action: Creating a custom action to mark multiple books as published.

b) Explain any five customization commands with a suitable example for the model

given below.

Student (Stud_usn, Stud_name, Sem, marks). Incorporate customization commands

in the program?

Solution:

Five customization commands for the Django admin interface using the Student model

example.

1. Displaying Fields in List View

Command: list_display

2. Adding Search Functionality

Command: search_fields

3. Adding Filters

Command: list_filter

4. Editable Fields in List View

Command: list_editable

5. Ordering Records

Command: ordering

Example:

class StudentAdmin(admin.ModelAdmin):

 list_display = ('Stud_usn', 'Stud_name', 'Sem', 'marks')

 search_fields = ('Stud_usn', 'Stud_name')

 list_filter = ('Sem',)

 list_editable = ('marks',)

 ordering = ('Sem', 'Stud_name')

admin.site.register(Student, StudentAdmin)

2

You have a Student model with fields stud_usn, stud_name, sem, and marks. Create a

model form for the Student model and add custom validation to ensure that the sem

field is between 1 and 8. Explain how to implement the custom validation in the form

and provide code snippets for the model, form, and validation method.

Solution:

To create a model form for the Student model and add custom validation to ensure that

the sem field is between 1 and 8, follow these steps:

1. Define the Student Model

models.py

from django.db import models

class Student(models.Model):

 stud_usn = models.CharField(max_length=10)

 stud_name = models.CharField(max_length=100)

 sem = models.IntegerField()

 marks = models.IntegerField()

 def __str__(self):

 return self.stud_name

2. Create a Custom Validator

forms.py

from django.core.exceptions import ValidationError

from django import forms

from .models import Student

from .validators import validate_sem

def validate_sem(value):

 if value < 1 or value > 8:

 raise ValidationError('Semester must be between 1 and 8.')

class StudentForm(forms.ModelForm):

 class Meta:

 model = Student

 fields = ['stud_usn', 'stud_name', 'sem', 'marks']

 sem = forms.IntegerField(validators=[validate_sem])

3. Use the Form in a View

views.py

from django.shortcuts import render, redirect

from .forms import StudentForm

def create_student(request):

 if request.method == 'POST':

 form = StudentForm(request.POST)

 if form.is_valid():

 form.save()

 return redirect('success')

 else:

 form = StudentForm()

 return render(request, 'create_student.html', {'form': form})

def success(request):

 return render(request, 'success.html')

4. Create Templates for the Form and Success Page

<!-- create_student.html -->

<!DOCTYPE html>

<html>

<head>

 <title>Create Student</title>

</head>

<body>

 <h1>Create Student</h1>

 <form method="post">

 {% csrf_token %}

 {{ form.as_p }}

 <button type="submit">Submit</button>

 </form>

</body>

</html>

<!-- success.html -->

<!DOCTYPE html>

<html>

<head>

 <title>Success</title>

</head>

<body>

 <h1>Student Created Successfully!</h1>

</body>

</html>

3

Explain how to include URL configurations from two different Django apps, students and
courses, in the main project's urls.py file. Provide code snippets for the urls.py files in
both the apps and the main project, and describe the benefits of organizing URLs in this
manner.

Solution:

To include URL configurations from two different Django apps (students and

courses) in the main project's urls.py file, follow these steps:

1. Define URLs in the students App
students/urls.py
from django.urls import path
from . import views

urlpatterns = [
 path('', views.index, name='student_index'),
 path('<int:id>/', views.detail, name='student_detail'),
]

2. Define URLs in the courses App

courses/urls.py
from django.urls import path
from . import views

urlpatterns = [

 path('', views.index, name='course_index'),
 path('<int:id>/', views.detail, name='course_detail'),
]

3. Include App URLs in the Main Project's urls.py
main_project/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path('students/', include('students.urls')),
 path('courses/', include('courses.urls')),
]

Benefits of Organizing URLs in this Manner

1. Modularity: Each app manages its own URLs, making the project modular and
easier to maintain.

2. Scalability: Adding new apps or modifying existing ones is simpler and more
isolated.

3. Clarity: The main urls.py file remains clean and clear, showing a high-level
overview of the project's URL structure.

4. Reusability: URL patterns can be reused across different projects or moved easily
between them.

4

Explain what are the principal advantage of Generic view in Django. Explain the

Class based views and their types with example.

Solution:

Principal Advantages of Generic Views in Django

1. Speed: Rapid development due to pre-built views for common tasks.
2. Code Reduction: Less code duplication and more concise

implementations.
3. Consistency: Follows Django's design patterns, ensuring consistent code

structure.
4. Flexibility: Customizable through mixins and class attributes.
5. Built-in Features: Includes built-in functionalities like pagination, form

handling, and more.

Class Based views:
● Generic Views or Class-Based Generic views. in web development,

particularly in the Django framework, are a set of pre-built views that

provide common functionalities.

● Using Class-Based views, we can easily handle the GET, POST requests for

a view.

● They help developers quickly implement common patterns in web

applications, such as displaying a list of objects, showing details of a single

object, creating new objects, updating existing objects, and deleting

objects.

● Basically we can handle CRUD operation.

Class Based Views in Django:
● CreateView – create or add new entries in a table in the database.
● Retrieve Views – read, retrieve, search, or view existing entries as a

list(ListView) or retrieve a particular entry in detail (DetailView) .
● UpdateView – update or edit existing entries in a table in the database
● DeleteView – delete, deactivate, or remove existing entries in a table in

the database
● FormView – render a form to template and handle data entered by user

5

How would you customize the ModelForm to include additional fields that are not part

of the Customer model?

Solution:

Assume you have a Customer model with fields name, email, and phone. You want

to add a field message to a form that allows customers to send a message along with their

information.

forms.py

from django import forms

https://www.geeksforgeeks.org/class-based-generic-views-django-create-retrieve-update-delete/#createview
https://www.geeksforgeeks.org/class-based-generic-views-django-create-retrieve-update-delete/#retrieveview
https://www.geeksforgeeks.org/class-based-generic-views-django-create-retrieve-update-delete/#listview
https://www.geeksforgeeks.org/class-based-generic-views-django-create-retrieve-update-delete/#detailview
https://www.geeksforgeeks.org/class-based-generic-views-django-create-retrieve-update-delete/#updateview
https://www.geeksforgeeks.org/class-based-generic-views-django-create-retrieve-update-delete/#deleteview
https://www.geeksforgeeks.org/class-based-generic-views-django-create-retrieve-update-delete/#formview

 from .models import Customer

class CustomerForm(forms.ModelForm):

 # Define additional fields not in the Customer model

 message = forms.CharField(label='Message', widget=forms.Textarea)

 class Meta:

 model = Customer

 fields = ['name', 'email', 'phone'] # Include fields from the Customer model

views.py

from django.shortcuts import render, redirect

from .forms import CustomerForm

def customer_form(request):

 if request.method == 'POST':

 form = CustomerForm(request.POST)

 if form.is_valid():

 # Process the form data (save to database, send email, etc.)

 # For demonstration, let's just print the form data

 print(form.cleaned_data) # This dictionary contains all form data

 return redirect('form_success') # Redirect to a success page

 else:

 form = CustomerForm()

 return render(request, 'customer_form.html', {'form': form})

def form_success(request):

 return render(request, 'form_success.html')

<!-- customer_form.html -->

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Customer Form</title>

</head>

<body>

 <h2>Customer Form</h2>

 <form method="post">

 {% csrf_token %}

 {{ form.as_p }}

 <!-- Additional field -->

 <div>

 <label for="{{ form.message.id_for_label }}">Message:</label>

 {{ form.message }}

 </div>

 <button type="submit">Submit</button>

 </form>

</body>

</html>

6 a) Write a python function for validating the mobile number with validation

condition as 10 digits, ‘should not start with 0, + can be at the beginning.

Solution:

forms.py

from django import forms

def mobile_no(value):

 mobile = str(value)

 if len(mobile) != 10:

 raise forms.ValidationError("Mobile Number should have 10 digits.")

 if mobile[0] == '0':

 raise forms.ValidationError("Mobile Number should not start with '0'.")

 if not mobile.isdigit():

 raise forms.ValidationError("Mobile Number should only contain digits.")

 if not mobile.replace('+', '').isdigit():

 raise forms.ValidationError("Mobile Number should only contain digits and optionally

a leading '+'.")

class StuForm(forms.Form):

 mob = forms.IntegerField(validators =[mobile_no])

b) Describe how to use Django's generic ListView to display a list of items from a

model named Post with fields title, content, and published_date. Provide the

necessary code snippets for the model, view, URL configuration, and template.

Solution:

Steps:

1. Define the Post Model

models.py

from django.db import models

class Post(models.Model):

 title = models.CharField(max_length=200)

 content = models.TextField()

 published_date = models.DateTimeField(auto_now_add=True)

 def __str__(self):

 return self.title

2. Create a ListView in Views

views.py

from django.views.generic import ListView

from .models import Post

class PostListView(ListView):

 model = Post

 template_name = 'post_list.html'

 context_object_name = 'posts'

 ordering = ['-published_date'] # Optional: Order posts by published date descending

 paginate_by = 10 # Optional: Paginate by 10 posts per page

3. URL Configuration

urls.py

from django.urls import path

from .views import PostListView

urlpatterns = [

 path('posts/', PostListView.as_view(), name='post_list'),

 # Add other URLs as needed

]

4. Create a Template for Listing Posts

<!-- post_list.html -->

<body>

 <h1>Post List</h1>

 {% for post in posts %}

 <h2>{{ post.title }}</h2>

 <p>{{ post.content }}</p>

 <p>Published on: {{ post.published_date }}</p>

 {% empty %}

 No posts found.

 {% endfor %}

</body>

