Sub | FULL STACK DEVELOPMENT Sub 21CS62 |Branch ISE
: Code: :
Date: | 8/7/2024 |Duration |90 min’s m:;(ks 50 | Sem/Sec | VI/ A, B, C OBE
Answer any FIVE FULL Questions MA |CO |RBT
RKS

1 a) What is the purpose of a database schema in Django? Explain the steps to define5M |CO2 |L2
a model in Django and How would you retrieve all objects from a Django
model?

1 b) Explain with an example the use of a model string representation for a Django5M |CO2 |L2
model.

2 |Develop a Django app that performs student registration to a course. It shouldil0M [CO3 |L3
also display list of students registered for any selected course. Create students
and course as models

3 [Create a feedback form that saves data to a database model and includel0OM [CO2 |L3
validation for feedback

4 |Compare and contrast the use of regular forms and ModelForms using examples{1l0OM [CO2 |L2
in Django.

5 |How would you extend the Django admin interface to include additionall0 M |CO2 |L2
functionality for a specific model?

6 a) [Demonstrate how to link a form submission to a model instance in Django. 5 M CO3 |L2

6 b) Given a complex URL routing scenario, explain how you would organizes M CO2 |L2
URLConfs in a Django project

1 a) Purpose of a Database Schema in Django, Steps to Define a Model, and

Retrieving All Objects from a Model
Marks: 5M, CO2, L2
Evaluation Scheme:
e Purpose of a database schema: 1 mark
e Steps to define a model: 2 marks

e Retrieving all objects from a model: 2 marks

Answer:

Purpose of a Database Schema in Django: A database schema in Django defines the structure
of the database, including the tables, fields, and relationships between the data. It ensures data
integrity, enforces constraints, and allows Django to interact with the database in a consistent

manner.

Steps to Define a Model in Django:

1. Create the Model: Define a class that inherits from django.db.models.Model. Each

attribute of the class represents a database field.

python
Copy code
from django.db import models

class Student (models.Model) :
first name = models.CharField (max length=30)
last name = models.CharField(max length=30)
email = models.EmailField()

Add the Model to INsTALLED APPS: Ensure your app is listed in the INSTALLED APPs
setting in settings.py.

Create Migrations: Run python manage.py makemigrations tO create migration
files.

Apply Migrations: Run python manage.py migrate t0o apply the migrations and
create the database schema.

Retrieving All Objects from a Django Model: Use the .a11 () method on the model’s
manager.

python

Copy code
students = Student.objects.all()

1 b) Example of Model String Representation

Marks: 5M, CO2, L2

Evaluation Scheme:

Explanation of string representation: 2 marks
Example: 3 marks

Answer:

Explanation of String Representation: The str method in a Django model provides a
human-readable representation of the model instances. This is especially useful for displaying
meaningful information in Django admin or during debugging.

Example:

python

Copy code
from django.db import models

class Course (models.Model) :

name = models.CharField(max length=100)
code = models.CharField(max length=10)

def str (self):

return f"{self.code}: {self.name}"

When an instance of Course 1is printed, it will display as "CS101:
Introduction to Computer Science" for example.

2. Developing a Django App for Student Registration to a Course
Marks: 10M, CO3, L3
Evaluation Scheme:

e Model definitions: 3 marks

o Views for registration: 3 marks

o Template for displaying students: 2 marks
e URL configurations: 2 marks

Answer:

Model Definitions:

python
Copy code
from django.db import models

class Course (models.Model) :
name = models.CharField(max length=100)
code = models.CharField(max length=10)

def str (self):
return f"{self.code}: {self.name}"

class Student (models.Model) :

first name = models.CharField (max length=30)

last name = models.CharField(max length=30)

email = models.EmailField()

course = models.ForeignKey (Course, on_delete=models.CASCADE,
related name='students"')

def str (self):
return f"{self.first name} {self.last name}"

Views for Registration:

python

Copy code

from django.shortcuts import render, redirect
from .models import Student, Course

from .forms import StudentForm

def register student (request):
if request.method == 'POST':
form = StudentForm(request.POST)
if form.is valid():
form.save ()
return redirect ('student list')
else:
form = StudentForm()
return render (request, 'register student.html', {'form': form})

def student list(request):
courses = Course.objects.all()
return render (request, 'student list.html', {'courses': courses})

Template for Displaying Students: register student.html

html
Copy code
<form method="post">
{% csrf token %}
{{ form.as p }}
<button type="submit">Register</button>
</form>

student list.html

html
Copy code
{%$ for course in courses %}
<h2>{{ course.name }}</h2>

{$ for student in course.students.all %}
<1i>{{ student.first name }} {{ student.last name }}</1li>
{%$ endfor %}

{% endfor %}

URL Configurations:

python

Copy code

from django.urls import path
from . import views

urlpatterns = [
path('register/', views.register student, name='register student'),
path('students/', views.student list, name='student list'),

3. Creating a Feedback Form with Validation
Marks: 10M, CO2, L3
Evaluation Scheme:

o Model definition: 3 marks

e Form definition: 3 marks

e View for form handling: 2 marks

e Template with validation: 2 marks

Answer:

Model Definition:

python
Copy code
from django.db import models

class Feedback (models.Model) :
name = models.CharField(max length=100)
email = models.EmailField()
comments = models.TextField()

created at = models.DateTimeField(auto now_add=True)

Form Definition:

python

Copy code

from django import forms
from .models import Feedback

class FeedbackForm(forms.ModelForm) :
class Meta:
model = Feedback
fields = ['name', 'email', 'comments']

def clean comments (self):
comments = self.cleaned data.get ('comments')
if len(comments) < 10:
raise forms.ValidationError ("Comments
characters long.")
return comments

View for Form Handling:

python

Copy code

from django.shortcuts import render, redirect
from .forms import FeedbackForm

def feedback view(request):
if request.method == 'POST':
form = FeedbackForm(request.POST)
if form.is valid():
form.save ()
return redirect ('thank you')
else:
form = FeedbackForm/{()
return render (request, 'feedback.html', {'form':

Template with Validation: feedback.html

html

Copy code

<form method="post">
{% csrf token %}
{{ form.as p }}

must Dbe

form})

at

least

10

<button type="submit">Submit</button>
</form>
% if form.errors %}

% for field in form %}
% for error in field.errors %}
<1li>{{ error }}</1li>
{%$ endfor %}
$ endfor %}

$ endif %}

4. Comparing Regular Forms and ModelForms in Django
Marks: 10M, CO2, L2
Evaluation Scheme:

o Explanation of Regular Forms: 2 marks

o Explanation of ModelForms: 2 marks

e Comparison: 4 marks

e Examples: 2 marks

Answer:

Regular Forms: Regular forms in Django are created by subclassing forms.Form. They

provide a way to manually define fields and handle form validation.

ModelForms: ModelForms are created by subclassing forms.Mode1Form. They automatically
generate form fields based on the fields of a Django model, and they simplify the process of

creating and updating model instances.

Comparison:

o [Ease of Use: ModelForms are easier to use when the form closely matches the model,

as they require less boilerplate code.

o Flexibility: Regular forms provide more flexibility, allowing for custom fields and

validation logic that may not map directly to a model.

e Integration: ModelForms integrate seamlessly with Django's ORM, automatically

handling instance creation and updating.
Examples:

Regular Form:

python
Copy code
from django import forms

class ContactForm(forms.Form) :

name = forms.CharField(max length=100)

email = forms.EmailField()

message = forms.CharField(widget=forms.Textarea)
ModelForm:
python
Copy code

from django import forms
from .models import Feedback

class FeedbackForm(forms.ModelForm) :
class Meta:
model = Feedback
fields = ['name', 'email', 'comments']

5. Extending the Django Admin Interface
Marks: 10M, CO2, L2
Evaluation Scheme:

e Basic admin configuration: 3 marks
e Adding additional functionality: 5 marks
e Example: 2 marks

Answer:

Basic Admin Configuration: To extend the Django admin interface, you need to create a
custom admin class for the model and register it with the admin site.

python

Copy code

from django.contrib import admin
from .models import Student

class StudentAdmin (admin.ModelAdmin) :
list display = ('first name', 'last name', 'email')

search fields = ('first name', 'last name', 'email')

admin.site.register (Student, StudentAdmin)

Adding Additional Functionality: You can add various functionalities, such as custom
actions, filters, and fieldsets.

python

Copy code

class StudentAdmin (admin.ModelAdmin) :
list display = ('first name', 'last name', 'email')
search fields = ('first name', 'last name', 'email')
list filter = ('course',)

fieldsets = (

(None, {'fields': ('first name', 'last name')}),

('"Contact Information', {'fields': ('email',)}),
("Course Information', {'fields': ('course',)}),
)
actions = ['make inactive']

def make inactive (self, request,

	1 a) Purpose of a Database Schema in Django, Steps to Define a Model, and Retrieving All Objects from a Model
	1 b) Example of Model String Representation
	2. Developing a Django App for Student Registration to a Course
	3. Creating a Feedback Form with Validation
	4. Comparing Regular Forms and ModelForms in Django
	5. Extending the Django Admin Interface

