

MARKS

[4]

CO

3

RBT

L2

Internal Assessment Test 2 – JUL 2024 Scheme of Evaluation

Sub:	SOFTWAR	G		Sub Code:	21IS63	Branch:	ISE	
Date:	10/07/2024	Duration:	90 min	Max Marks:	50	Sem/Sec:	VI/	OBE

Answer any FIVE FULL Questions

a.Describe Rapps-Weyuker hierarchy of dataflow coverage metrics. Scheme: Diagram+Explanation-2+2 marks Solution:

Rapps-Weyuker hierarchy of dataflow coverage metrics.

b.Explain McCabe's basis path testing for Triangle problem. Scheme: Definition+McCabes path Table with flow graph+Test case -1+3+2 marks Solution:

McCabe's Path of Triangle Program

McCabe	Paths	Expected Results
Original	P1: First-A-B-C-E-F-H-J-K-M-N-O- Last	Scalene
Flip P1 at B	P2: First-A-B-D-E-F-H-J-K-M-N-O- Last	Infeasible path
Flip P1 at F	P3: First-A-B-C-E-F-G-O-Last	Infeasible path
Flip P1 at H	P4: First-A-B-C-E-F-H-I-N-O-Last	Equilateral
Flip P1 at J	P5: First-A-B-C-E-F-H-J-L-M-N-O- Last	Isosceles

[6]

[6]

L2

2

2. a.Generate Decision Table and Test cases for the NextDate Function.

Scheme: Decision Table +Test Cases – 3 +3 marks

Solution:

	7	2	.3	4	5	6	7	8	9	10	ı	
c1: Month in	MI	MI	MI	MI	MI	M2	M2	M2	M2	M2		
c2: Day in	D1	D2	D3	D4	D5	D1	D2	D3	D4	D5	l	
c3: Year in	_	I —	_		_	_						
Actions												
a1: Impossible				I	×							
a2: Increment day	×	×	×			×	×	×	×			
a3: Reset day				×				I		×		
a4: Increment month				×						×		
a5: Reset month												
a6: Increment year												
	77	12	7.3	14	15	16	17	18	19	20	21	22
c1: Month in	мз	мз	мз	мз	мз	M4						
c2: Day in	D1	D2	D3	D4	D5	D1	D2	D2	D3	D3	D4	D5
c3: Year in	_	l –	_	l –	_	_	Y1	Y2	Y1	Y2	_	_
Actions												
a1: Impossible										×	×	×
a2: Increment day	×	×	×	×		×	×					
a3: Reset day					×			×	×			
a4: Increment month								×	×			
a5: Reset month					×							
a6: Increment year					×							

Case ID	Month	Day	Year	Expected Output
1-3	4	15	2001	4/16/2001
4	4	30	2001	5/1/2001
5	4	31	2001	Invalid input date
6-9	1	15	2001	1/16/2001
10	1	31	2001	2/1/2001
11-14	12	15	2001	12/16/2001
15	12	31	2001	1/1/2002
16	2	15	2001	2/16/2001
17	2	28	2004	2/29/2004
18	2	28	2001	3/1/2001
19	2	29	2004	3/1/2004
20	2	29	2001	Invalid input date
21, 22	2	30	2001	Invalid input date

b. Describe Mutual Exclusive property for Triangle Problem.

Scheme: Definition +Test case Table – 1+3 marks

Solution:

When conditions refer to equivalence classes, decision tables have a characteristic appearance and Conditions in the decision table in Table 7.4 are from the NextDate problem; they refer to the **mutually exclusive possibilities** for the month variable. Because a month is in exactly one equivalence class, we cannot ever have a rule in which two entries are true.

The don't care entries (—) really mean "must be false."

[4]

						-								
	c1: a < b + c?	F	т	т	т	т	т	т	т	т	т	т		
	c2: b < a + c?	_	F	т	т	т	т	т	т	Т .	т	т		
	c3: c < a + b?	_	_	F	т	т	т	т	т	т	т	т		
	c4: a = b?	_	-		т	т	т	т	F	F	F	F		
	c5: a = c?	_	-	-	т	т	F	F	т	т	F	F		
	c6: b = c?	_	_	_	т	F	т	F	т	F	т	F		
	Rule count	32	16	8	1	1	1	1	7	1	1	1		
	a1: Not a triangle	×	×	×										
	a2: Scalene											×		
	a3: Isosceles							×		×	×			
	a4: Equilateral				×									
	a5: Impossible					×	×		×					
B. Compute the following for the triangle problem. A. Flow Graph B. Cyclomatic [10] 3									L3					
	Complexity C. Path	Festing	Strate	egy an	d cov	erage	table.	D. te	st cas	es.	-			
	Scheme: code+ flow graph+ Cyclomatic complexity+ Path testing +Test cases –													

2+3+1+2+2 marks

Flow Graph

• 2

Solution:

- 1. Program Triangle 2. Dim a, b,c As Integer 3. Dim IsTriangle As Boolean 4. Output ("enter a,b, and c integers") 5. Input (a,b,c) 6. Output ("side 1 is", a) 7. Output ("side 2 is", b)
- 9. If (a<b+c) AND (b<a+c) And (c<b+a)
- 10. then IsTriangle = True

8. Output ("side 3 is", c)

- 11. else IsTriangle = False
- 12. endif

13. If IsTriangle

- 14. then if (a=b) AND (b=c) 15. then Output ("equilateral") else if (a != b) AND (a != b) AND (b != c) 16. 17. then Output ("Scalene") else Output ("Isosceles") 18. 19. endif
- 20. endif 21. else Output ("not a triangle")
- 22. endif
- 23. end Triangle2
 - ① 4-5-6-7-8-9-10-12-13-21-22-23
 - ② 4-5-6-7-8-9-11-12-13-14-15-20-22-23
 - 3 4-5-6-7-8-9-11-12-13-14-16-17-19-20-22-23
 - **4-5-6-7-8-9-11-12-13-14-16-18-19-20-22-23**

Path		Decis	ion		Т	Expected Results		
	9	13	14	16	a	b	С	
1	Т	F			100	100	200	Not A triangle
2	F	Т	Т		100	100	100	Equilateral
3	F	T	F	T	100	50	60	Scalene
4	F	T	Т	F	100	100	50	Isosceles

GUIDELINES FOR CHOOSING SLICES

- If statement fragment n in S(V, n) is a *defining* node for v, then n is included in the slice.
- If statement fragment n is a usage node, then it is included in the slice.
- If a statement is both a *defining* and a *usage* node, then it is included in the slice.
- In a static slice, *P-uses and C-uses* of other variables (not the v in the slice set V) are included to the extend that their execution affects the value of the variable v.
- If the value of v is the same whether a statement fragment is included or excluded, exclude the statement fragment.
- O-use, L-use, and I-use nodes are excluded from slices

SLICE ON LOCK VARIABLE

In the program fragment

```
13. Input(locks)
```

14. While NOT(locks = -1)

Input(stocks, barrels)
totalLocks = totalLocks + locks 15.

16.

totalStocks = totalStocks + stocks totalBarrels = totalBarrels + barrels 18.

19. Input(locks) 20.EndWhile

There are these slices on locks (notice that statements 15, 17, and 18 do not appear):

S1: S(locks, 13) = {13} DEFINING NODE I-DEF S2: S(locks, 14) = {13, 14, 19, 20} S3: S(locks, 16) = {13, 14, 19, 20} S4: S(locks, 19) = {19} DEFINING NODE I-DEF

SLICE ON STOCKS AND BARRELS

 S_5 : $S(stocks, 15) = \{13, 14, 15, 19, 20\}$

 S_6 : $S(stocks, 17) = \{13, 14, 15, 19, 20\}$

 S_7 : S(barrels, 15) = {13,14,15,19,20}

 S_e : S(barrels, 18) = {13,14,15, 19,20}

SLICE ON TOTAL LOCKS

 S_o : $S(totallocks, 10) = \{10\}$ (A-def)

 S_{10} : S(totallocks, 16) = {10,13,14,16,19,20} (A-def & C-use)

S(totallocks, 21)= {10,13,14,16,19,20} 21 is an O-Use of totallocks, excluded

 S_{11} : S(totallocks, 24) = {10,13,14,16,19,20} (24 is a C-use of total locks)

Faculty Signature CCI Signature **HOD Signature**