

USN

Internal Assessment Test 2 – JULY

2024- SCHEME

Sub:
MICROCONTROLLERS Sub

Code:
BCS402 Branch: CSE

Date: 10/07/24 Duration: 90 mins Max Marks: 50
Sem /

Sec:
IV Sem A/B/C OBE

Answer any FIVE FULL Questions MARKS
CO RBT

1. a) Explain how Registers are allocated to optimize the program.

4 Marks:

The compiler attempts to allocate a processor register to each local variable you use in

a C function. It will try to use the same register for different local variables if the use of the

variables do not overlap. When there are more local variables than available registers, the

compiler stores the excess variables on the processor stack. These variables are called spilled

or swapped out variables since they are written out to memory (in a similar way virtual

memory is swapped out to disk). Spilled variables are slow to access compared to variables

allocated to registers.

To implement a function efficiently

■ minimize the number of spilled variables

■ ensure that the most important and frequently accessed variables are stored in registers

The register keyword in C hints that a compiler should allocate the given variable to

a register. However, different compilers treat this keyword in different ways, and different

architectures have a different number of available registers (for example, Thumb and ARM).

Therefore we recommend that you avoid using register and rely on the compiler’s normal

register allocation routine.

2 Marks

Efficient Register Allocation:

[6] CO3 L2

Try to limit the number of local variables in the internal loop of functions to 12. The

compiler should be able to allocate these to ARM registers

You can guide the compiler as to which variables are important by ensuring these

variables are used within the innermost loop.

1. b) Interpret the load/store instruction classes available in ARM architecture .Explain the actions

performed by these instructions.

Load and store instructions - 2 M

Action for each - 2 M

[4] CO3 L2

2 a) Explain four- register rule used for passing function arguments in ARM-Thumb Procedure

Call Standard (ATPCS) with a proper example.

Explanation - 4 M

Digram- 2 M

The first four integer arguments are passed in the first four ARM registers: r0, r1, r2, and

r3. Subsequent integer arguments are placed on the full descending stack, ascending in

memory . Function return integer values are passed in r0.

This description covers only integer or pointer arguments. Two-word arguments such as

long long or double are passed in a pair of consecutive argument registers and returned in

r0, r1. The compiler may pass structures in registers or by reference according to

command line compiler options.

The first point to note about the procedure call standard is the four-register rule. Functions

with four or fewer arguments are far more efficient to call than functions with five or more

arguments. For functions with four or fewer arguments, the compiler can pass all the

arguments in registers. For functions with more arguments, both the caller and callee must

access the stack for some arguments.Note that for C++ the first argument to an object

method is the this pointer. This argument is implicit and additional to the explicit

arguments.If your C function needs more than four arguments, or your C++ method has

more than three explicit arguments, then it is almost always more efficient to use structures.

Group related arguments into structures, and pass a structure pointer rather than multiple

arguments. Which arguments are related will depend on the structure of your software.

[6] CO3 L2

2.b) Describe loop unrolling.How can you overcome the loop-overhead using loop unrolling.

Loop unrolling- 2M

How to overcome overhead - 1M

Example - 1M

Each loop iteration costs two instructions in addition to the body of the loop: a subtract to

decrement the loop count and a conditional branch.

We call these instructions the loop overhead. On ARM7 or ARM9 processors the

subtract takes one cycle and the branch three cycles, giving an overhead of four cycles

per loop.

You can save some of these cycles by unrolling a loop—repeating the loop body several

times, and reducing the number of loop iterations by the same proportion.

Example:

The following code unrolls our packet checksum loop by four times. We assume that the

number of words in the packet N is a multiple of four.

int checksum_v9(int *data, unsigned int N)

{

int sum=0;

do

{

sum += *(data++);

sum += *(data++);

sum += *(data++);

sum += *(data++);

N -= 4;

} while (N!=0);

return sum;

}

[4] CO3 L2

3 a) Identify the issues encountered when porting C code to ARM.

Any 5 issues with explanation- 5 M

The char type

The int type.

Unaligned data pointers

Endian assumptions

Function prototyping

Use of bit-fields

Use of enumerations

Inline assembly

The volatile keyword.

[5] CO3 L3

3. b) Define Pointer aliasing.Analyze the concept of pointer-aliasing by using the code given

below.

void timers_v1(int *timer1, int *timer2, int *step)

{

*timer1 += *step;

*timer2 += *step;

}

Definition: 1 M

Analysis of the code - 4 M

Two pointers are said to alias when they point to the same address. If you write to one

pointer, it will affect the value you read from the other pointer. In a function, the compiler

often doesn’t know which pointers can alias and which pointers can’t. The compiler must

be very pessimistic and assume that any write to a pointer may affect the value read from

any other pointer, which can significantly reduce code efficiency

The above c code compiles to

[5] CO3 L4

timers_v1

LDR r3,[r0,#0] ; r3 = *timer1

LDR r12,[r2,#0] ; r12 = *step

ADD r3,r3,r12 ; r3 += r12

STR r3,[r0,#0] ; *timer1 = r3

LDR r0,[r1,#0] ; r0 = *timer2

LDR r2,[r2,#0] ; r2 = *step

ADD r0,r0,r2 ; r0 += r2

STR r0,[r1,#0] ; *timer2 = t0

MOV pc,r14 ; return

Note that the compiler loads from step twice. Usually a compiler optimization called

common subexpression elimination would kick in so that *step was only evaluated once,

and the value reused for the second occurrence. However, the compiler can’t use this

optimization here. The pointers timer1 and step might alias one another. In other words,

the compiler cannot be sure that the write to timer1 doesn’t affect the read from step.

In this case the second value of *step is different from the first and has the value *timer1.

This forces the compiler to insert an extra load instruction

4 a) Consider the following C code to calculate the Checksum of a data packet containing 64

words.Illustrate the compiler output generated for the same code shown below.Summarize

the drawbacks of the compiler output.

short checksum_v3(short *data)

{

unsigned int i;

short sum = 0;

for (i = 0; i < 64; i++)

{

sum = (short)(sum + data[i]);

}

return sum;
}

Compiler output: 5 M

checksum_v3
MOV r2,r0 ; r2 = data
MOV r0,#0 ; sum = 0

MOV r1,#0 ; i = 0
checksum_v3_loop
ADD r3,r2,r1,LSL #1 ; r3 = &data[i]
LDRH r3,[r3,#0] ; r3 = data[i]
ADD r1,r1,#1 ; i++

CMP r1,#0x40 ; compare i, 64
ADD r0,r3,r0 ; r0 = sum + r3
MOV r0,r0,LSL #16
MOV r0,r0,ASR #16 ; sum = (short)r0

BCC checksum_v3_loop ; if (i<64) goto loop
MOV pc,r14 ; return sum

Drawback of the output: 3 M

The loop now has extra three instructions.
There are two reasons for the extra instructions:
■ The LDRH instruction does not allow for a shifted address offset as the LDR instruction

did in checksum_v2. Therefore the first ADD in the loop calculates the address of item i
in the array. The LDRH loads from an address with no offset. LDRH has fewer addressing
modes than LDR as it was a later addition to the ARM instruction set. (See Table 5.1.)
■ The cast reducing total + array[i] to a short requires two MOV instructions. The
compiler shifts left by 16 and then right by 16 to implement a 16-bit sign extend.

The shift right is a sign-extending shift so it replicates the sign bit to fill the upper
16 bits.

[08] CO3 L3

4 b) List the C compiler datatype mappings for ARM.

Mapping c data types - 2M

[02] CO3 L1

5. a) Write a C program for ARM to find the factorial of a number.Also develop an Assembly

Language Program for the same.

[10] CO3 L3

Factorial C-Program -5 M

#include<lpc21xx.h>

int main(void) {

 unsigned long n=5, fact=1;

 unsigned char i;

 if (n==0) {

 fact=1;

 }

 else if(n>0) {

 for (i=1;i<=n;i++)

 {

 fact=fact*i;

 }

 }

}

Factorial ALP - 5 M

AREA FACTORIAL, CODE, READONLY

ENTRY

 MOV R0, #5

 MOV R1, #1

 MOV R2 #1

LOOP

 MUL R1,R2,R1

 ADD R2,R2,#1

 CMP R2,R0

 BLE LOOP

 STOP B STOP

 END

6.a) Explain full descending Stack with proper example.

A full descending stacks grow towards lower memory addresses.

When you use a full stack (F), the stack pointer sp points to an address that is the last

used or full location (i.e., sp points to the last item on the stack). In contrast, if you use an
empty stack (E) the sp points to an address that is the first unused or empty location (i.e., it

points after the last item on the stack).

Addressing modes for stack operation

Example:

[4] CO2 L2

6. b) With a neat diagram explain ARM processor exceptions and modes.

An exception is any condition that needs to halt normal execution of the instructions

Examples

•Resetting ARM core

•Failure of fetching instructions

•HWI

•SWI

Exception - 1M

Modes - 5 M

[6] CO4 L2

Faculty Signature CCI Signature HOD Signature

