USN

Internal Assessment Test 2 question paper — April 2024

eqﬁymns -
S

Ug CMRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A+ GRADE BY NAAC

Sub:

NoSQL database Sub Code: | 18CS823 | Branch: | CSE

Date:

13/4/2024 | Duration: | 90 mins | Max Marks: |50 | Sem/Sec: VII/A,B,C OBE

Answer any 5 FIVE FULL Questions

Explain incremental map reduce process in detail. Explain how scaling is handled in

key-value store with example.

Incremental Map-Reduce process -5 marks

scaling in key-value store-5 marks

Describe Map-reduce process to compare the sales of products for each month in

2011 to the prior year. Use suitable diagrams.

Map-reduce process with description -8 marks

Diagrams-2 marks

Suppose we want to return all the documents in an order collection (all rows in the

order table. Write down SQL and MongoDB queries for:

1) Selecting the orders for a single customerld of 883c2c5b4eSb (3 marks)

1) Selecting orderld and orderDate for one customer (3 marks)

1i1) Query for all the orders where one of the items ordered has a name like
Refactoring (2+2 marks)

Explain key-value store with respect to consistency and transactions. Explain Bucket

creation in key-value store.

Consistency in key-value store, bucket creation — 3+3 marks

Transaction processing in key-value store- 4 marks

Identify the situations where document databases are 1) applicable ii) not advisable.

Justify your answer.

document databases are applicable with justification - 5 marks

Not advisable with justification -5 marks

What is key-value store? Explain with an example. List and explain any two

features of key-value store.

key-value store with example- 343 marks

two features of key-value store - 4 marks

MARKS | CO |RBT

[10] |co2| L2

[10] |co2| L3

[10] |co3| L3

[10] CO3| L2

[10] CO3| L2

[10] | CO3 L3

Scheme

Explain incremental map reduce process in detail. Explain how scaling is handled in ~ [10]
key-value store with example.
Incremental Map-Reduce process -5 marks
scaling in key-value store-5 marks
Describe Map-reduce process to compare the sales of products for each month in [10]
2011 to the prior year. Use suitable diagrams.
Map-reduce process with description -8 marks
Diagrams-2 marks
Suppose we want to return all the documents in an order collection (all rows in the [10]
order table. Write down SQL and MongoDB queries for:
1v) Selecting the orders for a single customerld of 883c2c5b4eS5b (3 marks)
V) Selecting orderld and orderDate for one customer (3 marks)
vi) Query for all the orders where one of the items ordered has a name like
Refactoring (2+2 marks)
Explain key-value store with respect to consistency and transactions. Explain Bucket ~ [10]
creation in key-value store.
Consistency in key-value store, bucket creation — 3+3 marks
Transaction processing in key-value store- 4 marks
Identify the situations where document databases are i) applicable ii) not advisable. [10]
Justify your answer.
document databases are applicable with justification - 5 marks
Not advisable with justification -5 marks
What is key-value store? Explain with an example. List and explain any two [10]
features of key-value store.
key-value store with example- 3+3 marks
two features of key-value store - 4 marks

Solution

Q1. Explain incremental map reduce process in detail. Explain how scaling is handled in key-value store
with example.
ans:

Many map-reduce computations take a while to perform, even with clustered hardware, and new data
keeps coming in which means we need to rerun the computation to keep the output up to date.

- Starting from scratch each time can take too long, so often it’s useful to structure a map-reduce
computation to allow incremental updates, so that only the minimum computation needs to be done.

- The map stages of a map-reduce are easy to handle incrementally—only if the input data changes
does the mapper need to be rerun.

- Since maps are isolated from each other, incremental updates are straightforward.

- The more complex case is the reduce step, since it pulls together the outputs from many maps and
any change in the map outputs could trigger a new reduction.

- This re-computation can be lessened depending on how parallel the reduce step is. If we are
partitioning the data for reduction, then any partition that’s unchanged does not need to be re-reduced.

- Similarly, if there’s a combiner step, it doesn’t need to be rerun if its source data hasn’t changed.
- If our reducer is combinable, there’s some more opportunities for computation avoidance.

- If the changes are additive—that is, if we are only adding new records but are not changing or
deleting any old records—then we can just run the reduce with the existing result and the new
additions.

- If there are destructive changes, that is updates and deletes, then we can avoid some
recomputation by breaking up the reduce operation into steps and only recalculating those steps whose
inputs have changed—essentially, using a Dependency Network [Fowler DSL] to organize the
computation.

Q2. Describe Map-reduce process to compare the sales of products for each month in
2011 to the prior year. Use suitable diagrams
ans:

Consider an example where we want to compare the sales of products for each month in 2011 to the
prior year. To do this, we’ll break the calculations down into two stages.

- The first stage will produce records showing the aggregate figures for a single product in a single
month of the year.

- The second stage then uses these as inputs and produces the result for a single product by
comparing one month’s results with the same month in the prior year (see Figure 7.8).

product: puerh
281 e Sol
spuerh: 3
bl L product: puerh
quantity: 1200 S
month: 12
m/r m/r 12:puern:
“— / —_— / quantity: 1200
product: puerh prior_yr: 1000
' increase: 20%
2010:12 | Year:2010
:puerh: month: 12
quantity: 1000

Figure 7.8. A calculation broken down into two map-reduce steps, which will be expanded in the next
three figures

- A first stage (Figure 7.9) would read the original order records and output a series of key-value
pairs for the sales of each product per month.

product: puerh
2011:12 | Year: 2011
‘puerh: | month: 12
quantity: 26 product: puerh
2011:12 year: 2011
spuerh: month: 12
product: puerh quantity: 70
2011:12 | year: 2011
ma : : reduce
E/ ‘puerh: | month: 12 /
— ~
quantity: 44
product: dragonwell product: dragonwell
2011:12 mr: 201 2010112 year: 2011
:pl.lﬂl'h: month: 12 :draganwell: month: 12
quantity: 12 guantity: 12

Figure 7.9. Creating records for monthly sales of a product

- The only new feature is using a composite key so that we can reduce records based on the values

of multiple fields.

- The second-stage mappers (Figure 7.10) process this output depending on the year. A 2011 record
populates the current year quantity while a 2010 record populates a prior year quantity. Records for
earlier years (such as 2009) don’t result in any mapping output being emitted.

product: puerh
year: 2011
12:puerh: | month: 12
quantity: 1200
prior_yr: O

product: puerh
2011:12 | year: 2011
arh: month: 12
quantity: 1200

product: puarh

product: puerh
r: 2011
2010:12 year: 2010 e
Sl e map 12:puerh: | month: 12
et — / quantity: O
quantity: 1000

prior_yr: 1000

product: puerh

2009:12 | Year: 2008
puerh: | ponth: 12
quantity: 950

Figure 7.10. The second stage mapper creates base records for year-on-year comparisons.

- The reduce in this case (Figure 7.11) is a merge of records, where combining the values by
summing allows two different year outputs to be reduced to a single value (with a calculation based on
the reduced values thrown in for good measure).

product: puerh
year: 2011
12:puerh: | month: 12
quantity: 1200 product: puerh
o e year: 2011
manth: 12
reduce 12:puerh:
/ quantity: 1200
product: puerh b prior_yr: 1000
year: 2011 increase: 20%
12:puerh: | month: 12 -
quantity: 0
prior_yr: 1000

Figure 7.11. The reduction step is a merge of incomplete records.

Q3. Suppose we want to return all the documents in an order collection (all rows in the order table. Write
down SQL and MongoDB queries for:

1) Selecting the orders for a single customerld of 883c2c5b4e5b
i1) Selecting orderld and orderDate for one customer
iii) Query for all the orders where one of the items ordered has a name like Refactoring

ans:
SELECT * FROM order WHERE customerld = "883c2c5b4e5b"

The equivalent query in Mongo to get all orders for a single customerld of 883c2c5b4e5b:
db.order.find({"customerld":"883c2c5b4e5b"})

Similarly, selecting orderld and orderDate for one customer in SQL would be:
SELECT orderld,orderDate FROM order WHERE customerld = "883c2c¢5b4e5b"
and the equivalent in Mongo would be:
db.order.find({customerld:"883c2c5b4e5b"},{orderld: 1,orderDate:1})

SELECT * FROM customerOrder, orderltem, product
WHERE

customerOrder.orderld = orderltem.customerOrderld
AND orderltem.productld = product.productld

AND product.name LIKE '"%Refactoring%'

and the equivalent Mongo query would be:
db.orders.find({"items.product.name":/Refactoring/})

Q4. Explain key-value store with respect to consistency and transactions. Explain Bucket creation in key-value
store.
ans:

Consistency

1. Consistency is applicable only for operations on a single key, since these operations are either a

get, put, or delete on a single key. Across key writes are very expensive.

2. In distributed key-value store implementations like Riak, the eventually consistent model of

consistency is implemented.

3. Since the value may have already been replicated to other nodes, Riak has two ways of resolving

update conflicts: either the newest write wins and older writes loose, or
both (all) values are returned allowing the client to resolve the conflict.
4, In Riak, these options can be set up during the bucket creation.

5. Buckets are just a way to namespace keys so that key collisions can be reduced—for example,

all customer keys may reside in the customer bucket.

6. When creating a bucket, default values for consistency can be provided, for example that a

write is considered good only when the data is consistent across all the nodes where the data is stored.

Bucket bucket = connection.createBucket(bucketName).withRetrier(attempts(3))

.allowSiblings(siblingsAllowed)
.nVal(numberOfReplicasOfTheData)
.w(numberOfNodesToRespondToWrite)
.r(numberOfNodesToRespondToRead)
.execute();

7. If we need data in every node to be consistent, increase the numberOfNodesToRespondToWrite
set by w to be the same as nVal.

8. Of course doing that will decrease the write performance of the cluster.

9. To improve on write or read conflicts, change the allowSiblings flag during bucket creation: If it is
set to false, we let the last write to win and not create siblings

Transactions

Different products of the key-value store kind have different specifications of transactions. There
are no guarantees on the writes.

Many data stores do implement transactions in different ways.

Riak uses the concept of quorum implemented by using the W value—replication factor—during
the write API call.

Assume we have a Riak cluster with a replication factor of 5 and supply the W value of 3. When

writing, the write is reported as successful only when it is written and reported as a success on at least
three of the nodes.

This allows Riak to have write tolerance; in our example, with N equal to 5 and with a W value of
3, the cluster can tolerate N - W = 2 nodes being down for write operations, though we would still have
lost some data on those nodes for read

Bucket creation:
When creating a bucket, default values for consistency can be provided, for example that a write is
considered good only when the data is consistent across all the nodes where the data is stored.

Bucket bucket = connection.createBucket(bucketName).withRetrier(attempts(3))
.allowSiblings(siblingsAllowed)

.nVal(numberOfReplicasOfTheData)

w(numberOfNodesToRespondToWrite)

.r(numberOfNodesToRespondToRead)

.execute();

Q5. Identify the situations where document databases are 1) applicable ii) not advisable. Justify your
answer

ans:

Applicable

1.Storing Session Information
“* Generally, every web session is unique and is assigned a unique sessionid value.

“» Applications that store the sessionid on disk or in an RDBMS will greatly benefit from moving to a
key-value store, since everything about the session can be stored by a single PUT request or retrieved
using GET.

“* This single-request operation makes it very fast, as everything about the session is stored in a single
object.

“* Solutions such as Memcached are used by many web applications, and Riak can be used when
availability is important.

.2. User Profiles, Preferences

“* Almost every user has a unique userld, username, or some other attribute, as well as preferences
such as language, color, timezone, which products the user has access to, and so on.

“* This can all be put into an object, so getting preferences of a user takes a single GET operation.
“* Similarly, product profiles can be stored.

3. Shopping Cart Data

“* E-commerce websites have shopping carts tied to the user.

“* As we want the shopping carts to be available all the time, across browsers, machines, and sessions,
all the shopping information can be put into the value where the key is the userid.

“* A Riak cluster would be best suited for these kinds of applications.

When Not to Use

There are problem spaces where key-value stores are not the best solution.
.1. Relationships among Data

To express relationships between different sets of data, or correlate the data between different sets of
keys, key-value stores are not the best solution to use, even though some key-value stores provide
link-walking features.

2. Multi Operation Transactions

For saving multiple keys and if there is a failure to save any one of them, and you want to revert or roll
back the rest of the operations, key-value stores are not the best solution to be used.

3. Query by Data

“* If you need to search the keys based on something found in the value part of the key-value pairs,
then key-value stores are not going to perform well for you.

“* There is no way to inspect the value on the database side, with the exception of some products like
Riak Search or indexing engines like Lucene[Lucene] or Solr [Solr].

4. Operations by Sets

Since operations are limited to one key at a time, there is no way to operate upon multiple keys at the
same time. If you need to operate upon multiple keys, you have to handle this from the client side.

Q6. What is key-value store? Explain with an example. List and explain any two features of key-value
store.

ans:

A key-value store is a type of NoSQL database that organizes data as a collection of key-value pairs. In
this database model, each data item (or record) is stored as a key-value pair, where the key is a unique
identifier that is used to retrieve or access the associated value. Key-value stores are designed to be
simple and efficient for storing and retrieving data based on keys.

Example of Key-Value Store:
Imagine a simple key-value store used to store user profiles:
- Key: User ID (e.g., "123")

- Value: User Profile Information (e.g., {"name": "John Doe", "age": 30, "email":
"johndoe@example.com"})

In this example, the user ID serves as the key, and the associated user profile information (name, age,
email) is the value. Using the user ID as the key, we can quickly retrieve the corresponding user profile
data from the key-value store.

Features of Key-Value Stores:

1. **High Performance Retrieval**:

Key-value stores are optimized for fast retrieval of data based on keys. This performance is achieved by
using efficient data structures (like hash tables) to store and index key-value pairs. Retrieval operations
typically have a constant time complexity (O(1)), making key-value stores suitable for use cases where
rapid data access is crucial, such as caching and session management.

2. ¥*Schema-less Design**:

Key-value stores typically have a schema-less or schema-flexible design, meaning that each key-value
pair can have a different structure or format without requiring a predefined schema for the entire
database. This flexibility allows developers to store heterogeneous data types together in the same

database and adapt the data model as requirements evolve. It also simplifies data modeling and avoids
the overhead of maintaining complex schemas.

Key-value stores are widely used in various applications, including distributed caching (e.g., Redis),
session stores, user profiles, metadata storage, and real-time data processing. They provide a scalable
and efficient solution for managing large volumes of data with predictable performance characteristics.

