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a) 

Explain the following-  

a. Relaxing consistency 

b. CAP theorem 

c. Relaxing 

durability 
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1 
b) List and explain the approaches for constructing 

version stamps for multiple nodes data models. 

Any three approaches 

 

 

5M 
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2 
a)  Define Quorum. Explain Read and Write Quorums 

with examples 

Quorum 

Read Quorum 

Write quorum 
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3 
a) Explain partitioning and combining stages with 

example. 

Diagram – 

explanation 
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4 
a) Explain basic map reduce with neat diagram. 

Diagram 

Explanation 
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 b)  Explain how data can be read and posted from and to 

the bucket using queries in Riak. 

Example 

Explanation 
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5 
a) Explain the features of Key Value stores. 

Consistency 

Transactions 

Query Features 

Structure of dada 

Scaling 
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6 
a) 

Create a map reduce model for calculating 

average ordered quantity of each product. 
Compute and explain the calculations composed in 

map reduce with an example and neat diagram. 

Diagram  

Explanation  

 

 

 

 

5M 

5M 

10M 10M 



Scheme Of Evaluation 

Internal Assessment Test 2–April2024 
 

Sub: NoSQL Database Code: 18CS823 

Date: 13/4/2024 Duration: 90mins 
Max 

Marks: 50 
Sem: VIII Branch: ISE 

Note: Answer Any full five questions 

Q 1. a)  

 

Q-1 Explain the following- 

a. Relaxing consistency 

b. CAP theorem 

c. Relaxing durability 

d. Quorums 

 

Ans 1- 

Relaxing Consistency 

 
It is always possible to design a system to avoid inconsistencies, but often impossible to do so 

without making unbearable sacrifices in other characteristics of the system. As a result, we often 

have to tradeoff consistency for something else. While some architects see this as a disaster, we 

see it as part of the inevitable tradeoffs involved in system design. Furthermore, different domains 

have different tolerances for inconsistency, and we need to take this tolerance into account as we 

make our decisions. 

Trading off consistency is a familiar concept even in single-server relational database systems. 

Here, our principal tool to enforce consistency is the transaction, and transactions can provide 

strong consistency guarantees. However, transaction systems usually come with the ability to relax          

isolation levels, allowing queries to read data that hasn’t been committed yet, and in practice we 

see most applications relax consistency down from the highest isolation level (serialized) in order 

to get effective performance. We most commonly see people using the read-committed transaction 

level, which eliminates some read-write conflicts but allows others. 

Many systems forgo transactions entirely because the performance impact of transactions is too 

high. We’ve seen this in a couple different ways. On a small scale, we saw the popularity of 

MySQLduring the days when it didn’t support transactions. Many websites liked the high speed of 

MySQL and were prepared to live without transactions. At the other end of the scale, some very 

large websites, such as eBay [Pritchett], have had to forgo transactions in order to perform 

acceptably— this is particularly true when you need to introduce sharding. Even without these 



constraints, many application builders need to interact with remote systems that can’t be properly 

included within a transaction boundary, so updating outside of transactions is a quite common 

occurrence for enterprise applications. 

The CAP Theorem 

The basic statement of the CAP theorem is that, given the three properties of Consistency, 

Availability, and Partition tolerance, you can only get two. Obviously this depends very much on 

howyou define these three properties, and differing opinions have led to several debates on what 

the real consequences of the CAP theorem are. 

Availability has a particular meaning in thecontext of CAP it means that if you can talk to a 

node in the cluster, it can read and write data. That’s subtly different from the usual meaning, which 

we’ll explore later. Partition tolerance meansthat the cluster can survive communication breakages 

in the cluster that separate the cluster into multiple partitions unable to communicate with each 

other (situation known as a split brain)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. With two breaks in the communication lines, the network partitions into two 

groups. 

A single-server system is the obvious example of a CA system a system that has Consistency 

andAvailability but not Partition tolerance. A single machine can’t partition, so it does not have to 

worryabout partition tolerance. There’s only one node so if it’s up, it’s available. Being up and keeping 

consistency is reasonable. This is the world that most relational database systems live in. 

It is theoretically possible to have a CA cluster. However, this would mean that if a partition ever 



occurs in the cluster, all the nodes in the cluster would go down so that no client can talk to a node. By 

the usual definition of “available,” this would mean a lack of availability, but this is where 

CAP’sspecial usage of “availability” gets confusing. CAP defines “availability” to mean “every request 

received by a nonfailing node in the system must result in a response” [Lynch and Gilbert]. So a failed, 

unresponsive node doesn’t infer a lack of CAP availability. 

This does imply that you can build a CA cluster, but you have to ensure it will only partition rarely and 

completely. This can be done, at least within a data center, but it’s usually prohibitively expensive. 

Remember that in order to bring down all the nodes in a cluster on a partition, you also have to detect 

the partition in a timely manner—which itself is no small feat. 

So clusters have to be tolerant of network partitions. And here is the real point of the CAP theorem. 

Although the CAP theorem is often stated as “you can only get two out of three,” in practice what it’s 

saying is that in a system that may suffer partitions, as distributed system do, you have to trade off 

consistency versus availability. This isn’t a binary decision; often, you can trade off a little consistency 

to get some availability. The resulting system would be neither perfectly consistent nor perfectly 

available—but would have a combination that is reasonable for your particular needs. 

An example should help illustrate this. Martin and Pramod are both trying to book the last hotel room 

on a system that uses peer-to-peer distribution with two nodes (London for Martin and Mumbai for 

Pramod). If we want to ensure consistency, then when Martin tries to book his room on the London 

node, that node must communicate with the Mumbai node before confirming the booking. Essentially, 

both nodes must agree on the serialization of their requests. This gives us consistency—but should the 

network link break, then neither system can book any hotel room, sacrificing availability. 

One way to improve availability is to designate one node as the master for a particular hotel and ensure 

all bookings are processed by that master. Should that master be Mumbai, then Mumbai can still 

process hotel bookings for that hotel and Pramod will get the last room. If we use master- slave 

replication, London users can see the inconsistent room information but cannot make a booking and 

thus cause an update inconsistency. However, users expect that it could happen in this situation—

so,again, the compromise works for this particular use case. 

This improves the situation, but we still can’t book a room on the London node for the hotel 

whosemaster is in Mumbai if the connection goes down. In CAP terminology, this is a failure of 

availabilityin that Martin can talk to the London node but the London node cannot update the data. To 

gain more availability, we might allow both systems to keep accepting hotel reservations even if the 

network link breaks down. The danger here is that Martin and Pramod book the last hotel room. 

However, depending on how this hotel operates, that may be fine. Often, travel companies tolerate a 



certain amount of overbooking in order to cope with no-shows. Conversely, some hotels always keep a 

few rooms clear even when they are fully booked, in order to be able to swap a guest out of a room 

with problems or to accommodate a high-status late booking. Some might even cancel the booking with 

an apology once they detected the conflict—reasoning that the cost of that is less than the cost of losing 

bookings on network failures. 

The classic example of allowing inconsistent writes is the shopping cart, as discussed in Dynamo 

[Amazon’s Dynamo]. In this case you are always allowed to write to your shopping cart, even if 

network failures mean you end up with multiple shopping carts. The checkout process can merge the 

two shopping carts by putting the union of the items from the carts into a single cart and returning 

that.Almost always that’s the correct answer—but if not, the user gets the opportunity to look at the cart 

before completing the order. 

The lesson here is that although most software developers treat update consistency as The Way Things 

Must Be, there are cases where you can deal gracefully with inconsistent answers to requests. These 

situations are closely tied to the domain and require domain knowledge to know how to resolve. Thus 

you can’t usually look to solve them purely within the development team— you have to talk to domain 

experts. If you can find a way to handle inconsistent updates, this gives you more options to increase 

availability and performance. For a shopping cart, it means that shoppers can always shop, and do so 

quickly. And as Patriotic Americans, we know how vital it is to support Our Retail Destiny. 

A similar logic applies to read consistency. If you are trading financial instruments over a computerized 

exchange, you may not be able to tolerate any data that isn’t right up to date. However, if you are 

posting a news item to a media website, you may be able to tolerate old pages for minutes. 

In these cases you need to know how tolerant you are of stale reads, and how long the inconsistency 

window can be—often in terms of the average length, worst case, and some measure of the distribution 

for the lengths. Different data items may have different tolerances for staleness, and thus may need 

different settings in your replication configuration. 

 

 

Relaxing Durability 

 
So far we’ve talked about consistency, which is most of what people mean when they talk about the 

ACID properties of database transactions. The key to Consistency is serializing requests by forming 

Atomic, Isolated work units. But most people would scoff at relaxing durability—after all, what is 

thepoint of a data store if it can lose updates? 



As it turns out, there are cases where you may want to trade off some durability for higher performance. 

If a database can run mostly in memory, apply updates to its in-memory representation,and periodically 

flush changes to disk, then it may be able to provide substantially higher responsiveness to requests. 

The cost is that, should the server crash, any updates since the last flush will be lost. 

One example of where this tradeoff may be worthwhile is storing user-session state. A big website may 

have many users and keep temporary information about what each user is doing in some kind of session 

state. There’s a lot of activity on this state, creating lots of demand, which affects the responsiveness of 

the website. The vital point is that losing the session data isn’t too much of a tragedy—it will create 

some annoyance, but maybe less than a slower website would cause. This makes it a good candidate for 

nondurable writes. Often, you can specify the durability needs on a call-by-call basis, so that more 

important updates can force a flush to disk. 

Another example of relaxing durability is capturing telemetric data from physical devices. It maybe that 

you’d rather capture data at a faster rate, at the cost of missing the last updates should the server go 

down. 

Another class of durability tradeoffs comes up with replicated data. A failure of replication durability 

occurs when a node processes an update but fails before that update is replicated to the other nodes. A 

simple case of this may happen if you have a master-slave distribution model wherethe slaves appoint a 

new master automatically should the existing master fail. If a master does fail, any writes not passed 

onto the replicas will effectively become lost. Should the master come back online, those updates will 

conflict with updates that have happened since. We think of this as a durability problem because you 

think your update has succeeded since the master acknowledged it,but a master node failure caused it to 

be lost. 

If you’re sufficiently confident in bringing the master back online rapidly, this is a reason not to auto-

failover to a slave. Otherwise, you can improve replication durability by ensuring that the masterwaits 

for some replicas to acknowledge the update before the master acknowledges it to the client. 

Q-1 b List and explain the approaches through which version stamps for multiple 

nodes data models 

Ans - 

The basic version stamp works well when you have a single authoritative source for data, such as a 

single server or master-slave replication. In that case the version stamp is controlled by the master. Any 

slaves follow the master’s stamps. But this system has to be enhanced in a peer-to-peer distribution 

model because there’s no longer a single place to set the version stamps. 



 
If you’re asking two nodes for some data, you run into the chance that they may give you different 

answers. If this happens, your reaction may vary depending on the cause of that difference. It may be 

that an update has only reached one node but not the other, in which case you can accept the latest 

(assuming you can tell which one that is). Alternatively, you may have run into an inconsistent update, 

in which case you need to decide how to deal with that. In this situation, a simple GUID or etag won’t 

suffice, since these don’t tell you enough about the relationships. 

 
The simplest form of version stamp is a counter. Each time a node updates the data, it increments the 

counter and puts the value of the counter into the version stamp. If you have blue and green slave 

replicas of a single master, and the blue node answers with a version stamp of 4 and the green node 

with 6, you know that the green’s answer is more recent. 

 
In multiple-master cases, we need something fancier. One approach, used by distributed version control 

systems, is to ensure that all nodes contain a history of version stamps. That way you can see if the blue 

node’s answer is an ancestor of the green’s answer. This would either require the clients to hold onto 

version stamp histories, or the server nodes to keep version stamp histories and include them when 

asked for data. This also detects an inconsistency, which we would see if we get two version stamps 

and neither of them has the other in their histories. Although version control systems keep these kinds 

of histories, they aren’t found in NoSQL databases. 

 
A simple but problematic approach is to use timestamps. The main problem here is that it’s usually 

difficult to ensure that all the nodes have a consistent notion of time, particularly if updates can happen 

rapidly. Should a node’s clock get out of sync, it can cause all sorts of trouble. In addition, you can’t 

detect write-write conflicts with timestamps, so it would only work well for the single- master case—

and then a counter is usually better. 

 
The most common approach used by peer-to-peer NoSQL systems is a special form of version stamp 

which we call a vector stamp. In essence, a vector stamp is a set of counters, one for each node. A 

vector stamp for three nodes (blue, green, black) would look something like [blue: 43, green: 54, black: 

12]. Each time a node has an internal update, it updates its own counter, so an update in the green node 

would change the vector to [blue: 43, green: 55, black: 12]. 

Whenever two nodes communicate, they synchronize their vector stamps. There are several variations 

of exactly how this synchronization is done. We’re coining the term “vector stamp” as a general term in 



this book; you’ll also come across vector clocks and version vectors—these are specific forms of vector 

stamps that differ in how they synchronize. 

 
By using this scheme you can tell if one version stamp is newer than another because the newer stamp 

will have all its counters greater than or equal to those in the older stamp. So [blue: 1, green: 2, black: 

5] is newer than [blue:1, green: 1, black 5] since one of its counters is greater. If both stamps have a 

counter greater than the other, e.g. [blue: 1, green: 2, black: 5] and [blue: 2, green: 1, black: 5], then you 

have a write-write conflict. 

 
There may be missing values in the vector, in which case we use treat the missing value as 0. So [blue: 

6, black: 2] would be treated as [blue: 6, green: 0, black: 2]. This allows you to easily add new nodes 

without invalidating the existing vector stamps. 

 
Vector stamps are a valuable tool that spots inconsistencies, but doesn’t resolve them. Any conflict 

resolution will depend on the domain you are working in. This is part of the consistency/latency 

tradeoff. You either have to live with the fact that network partitions may make your system 

unavailable, or you have to detect and deal with inconsistencies. 

 

 

Q-2- Define Quorum. Explain Read and Write Quorums with examples. 
Ans 4- 
The more nodes are involve in a request, the higher is the chance of avoiding an inconsistency. This 

naturally leads to the question: How many nodes need to be involved to get strong consistency? 

Imagine some data replicated over three nodes. You don’t need all nodes to acknowledge a write to 

ensure strong consistency; all you need is two of them—a majority. If you have conflicting writes, only 

one can get a majority. This is referred to as a write quorum and expressed in a slightly pretentious 

inequality of W > N/2, meaning the number of nodes participating in the write (W) must be more than 

the half the number of nodes involved in replication (N). The number of replicas is often called the 

replication factor. 

Similarly to the write quorum, there is the notion of read quorum: How many nodes you need to 

contact to be sure you have the most up-to-date change. The read quorum is a bit more complicated 

because it depends on how many nodes need to confirm a write. 

Let’s consider a replication factor of 3. If all writes need two nodes to confirm (W = 2) then we need to 

contact at least two nodes to be sure we’ll get the latest data. If, however, writes are only confirmed by 



a single node (W = 1) we need to talk to all three nodes to be sure we have the latest updates. In this 

case, since we don’t have a write quorum, we may have an update conflict, but by contacting enough 

readers we can be sure to detect it. Thus we can get strongly consistent reads even if we don’t have 

strong consistency on our writes. 

This relationship between the number of nodes you need to contact for a read (R), those confirming a 

write (W), and the replication factor (N) can be captured in an inequality: You can have a strongly 

consistent read if R + W > N. 

These inequalities are written with a peer-to-peer distribution model in mind. If you have a master-

slave distribution, you only have to write to the master to avoid write-write conflicts, and similarly only 

read from the master to avoid read-write conflicts. With this notation, it is common to confuse the 

number of nodes in the cluster with the replication factor, but these are often different. I may have 100 

nodes in my cluster, but only have a replication factor of 3, with most of the distribution occurring due 

to sharding. 

Indeed most authorities suggest that a replication factor of 3 is enough to have good resilience. This 

allows a single node to fail while still maintaining quora for reads and writes. If you have automatic 

rebalancing, it won’t take too long for the cluster to create a third replica, so the chances of losing a 

second replica before a replacement comes up are slight. 

The number of nodes participating in an operation can vary with the operation. When writing, we might 

require quorum for some types of updates but not others, depending on how much we value consistency 

and availability. Similarly, a read that needs speed but can tolerate staleness should contact less nodes. 

Often you may need to take both into account. If you need fast, strongly consistent reads, you could 

require writes to be acknowledged by all the nodes, thus allowing reads to contact only one (N = 3, W= 

3, R = 1). That would mean that your writes are slow, since they have to contact all three nodes, and 

you would not be able to tolerate losing a node. But in some circumstances that may be the tradeoff to 

make. 

Q. 3 Explain partitioning and combining stages with example. 



 

 



 

 



 

 

 

 

 

Q. 4 b) Explain how data can be read and posted from and to the bucket using queries in Riak. 

All key-value stores can query by the key—and that’s about it. If you have requirements 

to query by using some attribute of the value column, it’s not possible to use the database: 

Your application needs to read the value to figure out if the attribute meets the conditions. 

Query by key also has an interesting side effect. What if we don’t know the key, 



especially during ad-hoc querying during debugging? Most of the data stores will not 

give you a list of all the primary keys; even if they did, retrieving lists of keys and then 

querying for the value would be very cumbersome. Some key-value databases get around 

this by providing the ability to search inside the value, such as Riak Search that allows 

you to query the data just like you would query it using Lucene indexes. 

While using key-value stores, lots of thought has to be given to the design of the key. Can 

the key be generated using some algorithm? Can the key be provided by the user (user 

ID, email, etc.)? Or derived from timestamps or other data that can be derived outside of 

the database? 

These query characteristics make key-value stores likely candidates for storing session 

data (with the session ID as the key), shopping cart data, user profiles, and so on. The 

expiry_secs property can be used to expire keys after a certain time interval, especially 

for session/shopping cart objects. 

Bucket bucket = getBucket(bucketName); 

IRiakObject riakObject = bucket.store(key, value).execute(); 

When writing to the Riak bucket using the storeAPI, the object is stored for the key 

provided. 

Similarly, we can get the value stored for the key using the fetchAPI. 

 
Riak provides an HTTP-based interface, so that all operations can be performed from the 

web browser or on the command line using curl. Let’s save this data to Riak: 



 

 
curl -i http://localhost:8098/buckets/session/keys/a7e618d9db25 

 



Q. 5 a) Explain the features of Key Value stores. 

While using any NoSQL data stores, there is an inevitable need to understand how the 

features compare to the standard RDBMS data stores that we are so used to. The primary 

reason is to understand what features are missing and how does the application 

architecture need to change to better use the features of a key-value data store. Some of 

the features we will discuss for all the NoSQL data stores are consistency, transactions, 

query features, structure of the data, and scaling. 

Consistency 

Consistency is applicable only for operations on a single key, since these operations are 

either a get, put, or delete on a single key. Optimistic writes can be performed, but are 

very expensive to implement, because a change in value cannot be determined by the data 

store. 

In distributed key-value store implementations like Riak, the eventually consistent model 

of consistency is implemented. Since the value may have already been replicated to other 

nodes, Riak has two ways of resolving update conflicts: either the newest write wins and 

older writes loose, or both (all) values are returned allowing the client to resolve the 

conflict. 

In Riak, these options can be set up during the bucket creation. Buckets are just a way to 

namespace keys so that key collisions can be reduced—for example, all customer keys 

may reside in the customer bucket. When creating a bucket, default values for consistency 

can be provided, for example that a write is considered good only when the data is 

consistent across all the nodes where the data is stored. 

 
If we need data in every node to be consistent, we can increase the number Of Nodes To 

Respond To Write set by w to be the same as n Val. Of course, doing that will decrease 

the write performance of the cluster. To improve on write or read conflicts, we can 

change the allow Siblings flag during bucket creation: If it is set to false, we let the last 

write to win and not create siblings. 

 

 

Transactions 

Different products of the key-value store kind have different specifications of 



transactions. Generally speaking, there are no guarantees on the writes. Many data stores 

do implement transactions in different ways. Riak uses the concept of quorum 

(“Quorums,” p. 57) implemented by using the W value 

—replication factor—during the write API call. 

Assume we have a Riak cluster with a replication factor of 5 and we supply the W value 

of 3. When writing, the write is reported as successful only when it is written and 

reported as a success on at least three of the nodes. This allows Riak to have write 

tolerance; in our example, with N equal to 5 

and with a W value of 3, the cluster can tolerate N - W = 2nodes being down for write 

operations, though we would still have lost some data on those nodes for read. 

 

Query Features 

All key-value stores can query by the key—and that’s about it. If you have requirements 

to query by using some attribute of the value column, it’s not possible to use the database: 

Your application needs to read the value to figure out if the attribute meets the conditions. 

Query by key also has an interesting side effect. What if we don’t know the key, 

especially during ad-hoc querying during debugging? Most of the data stores will not 

give you a list of all the primary keys; even if they did, retrieving lists of keys and then 

querying for the value would be very cumbersome. Some key-value databases get around 

this by providing the ability to search inside the value, such as Riak Search that allows 

you to query the data just like you would query it using Lucene indexes. 

While using key-value stores, lots of thought has to be given to the design of the key. Can 

the key be generated using some algorithm? Can the key be provided by the user (user 

ID, email, etc.)? Or derived from timestamps or other data that can be derived outside of 

the database? 

These query characteristics make key-value stores likely candidates for storing session 

data (with the session ID as the key), shopping cart data, user profiles, and so on. The 

expiry_secs property can be used to expire keys after a certain time interval, especially 

for session/shopping cart objects. 

Bucket bucket = getBucket(bucketName); 

IRiakObject riakObject = bucket.store(key, value).execute(); 

When writing to the Riak bucket using the storeAPI, the object is stored for the key 

provided. 

Similarly, we can get the value stored for the key using the fetchAPI. 

 
Riak provides an HTTP-based interface, so that all operations can be performed from the 

web browser or on the command line using curl. Let’s save this data to Riak: 



 

 
curl -i http://localhost:8098/buckets/session/keys/a7e618d9db25 

 

 



 

 

 

Q. 6 Create a map reduce model for calculating average ordered quantity of each 

product. Explain how are calculations composed in map reduce. Explain with neat 

diagram and example. 

 

The map-reduce approach is a way of thinking about concurrent processing that trades off 

flexibility in how you structure your computation for a relatively straightforward model 

for parallelizing the computation over a cluster. Since it’s a tradeoff, there are constraints 



on what you can do in your calculations. Within a map task, you can only operate on a 

single aggregate. Within a reduce task, you can only operate on a single key. This means 

you have to think differently about structuring your programs so they work well within 

these constraints. 

One simple limitation is that you have to structure your calculations around operations 

that fit in well with the notion of a reduce operation. A good example of this is 

calculating averages. Let’s consider the kind of orders we’ve been looking at so far; 

suppose we want to know the average ordered quantity of each product. An important 

property of averages is that they are not comparable. 

that is, if I take two groups of orders, I can’t combine their averages alone. Instead, I need 

to take total amount and the count of orders from each group, combine those, and then 

calculate the average from the combined sum and count. 

 
This notion of looking for calculations that reduce neatly also affects how we do counts. 

To make a count, the mapping function will emit count fields with a value of 1, which 

can be summed to get a total count. 

 
 

 

 

 



 

 


