USN					

			Interna	I Assessment	Test	Z - July 20	24	-					
Sub:	BIOLOGY	RIOLOGY FOR COMPLETER ENGINEERS				Sub Code:	BBOC407	Bran	ch:	ISE			
Date:	08/07/2024	Duration:	90 min's	Max Marks:	50	Sem/Sec:	IV A, B & C				OBE		
		<u>A</u>	nswer any FI	VE FULL Ques	stions				MA	RKS	CO	RBT	
1.	The structure	e and desig	n of the Ki	ngfisher's be	ak le	d to the de	sign of the b	oullet	1	0	CO4	L3	
		trains. Interpret.											
2.	Compare the process of photosynthesis to the functioning of photovoltaic cells.							5.	1	0	CO4	L2	
3.	Using application of echolocation in ultrasonography explain echolocation								1	0	CO3	L3	
	Use a neat nephrons.	labeled dia	agram and	explain the	mec	hanism of	filtration by	y the	1	0	CO3	L3	
5.	Explain the v	arious bloo	d substitute	s.					1	0	CO3	L2	
6.	Write a short note on								1	0	CO3	L2	
	i. Chronic ii. Spiromet		pulmonary	disease (5m)									

CI CCI

п

Internal Assessment Test 2 –July 2024

	1		mterna	Assessment	1030	2 July 202	2-T						
Sub:	BIOLOGY	BIOLOGY FOR COMPUTER ENGINEERS Sub Code: BBOC407 Bran						Bran	ch:	h: ISE			
Date:	08/07/2024	Duration:	90 min's	Max Marks:	50	Sem/Sec:	IV A, B & C				OBE	OBE	
		An	swer any FI	VE FULL Ques	tions		r.		MAF	RKS	CO	RBT	
1.	The structure	and desig	n of the Ki	ingfisher's bea	ak le	d to the de	sign of the b	oullet	1	0	CO4	L3	
	trains. Interpret.												
2.								1	0	CO4	L2		
3.	Using application of echolocation in ultrasonography explain echolocation							1	0	CO3	L3		
	Use a neat labeled diagram and explain the mechanism of filtration by the nephrons.						the	1	0	CO3	L3		
5.	Explain the various blood substitutes.						1	0	CO3	L2			
6.	Write a short note on								1	0	CO3	L2	
	iii. Chronic obstructive pulmonary disease (5m)iv. Spirometry (5m)												

Internal Assessment Test 2 – July 2024

USN

USN					

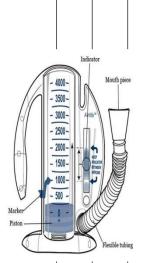
SCHEME & SOLUTION Internal Assessment Test 2 –July 2024

	1		Interna	l Assessment	Test		24	1			,
Sub:	BIOLOGY	FOR COM	MPUTER I	ENGINEERS		Sub Code:	BBOC407	Branch:	ISE		
Date:	08/07/2024	Duration:	90 min's	Max Marks:	50	Sem/Sec:	IV A, B &	С		OBE	
		Ar	iswer any FI	VE FULL Quest	<u>tions</u>			MA	RKS	CO	RBT
1.	trains. Interp The kingfish The bill is u longer a shorter : Relationshi Kingfishers large he bright p	re and designeret. hers have lor usually: and more cont and broader p with hum are generally ad supporting lumage (Feat	n of the King, dagger-l mpressed in in species t ans: y shy birds, ng its power uthers) &	ingfisher's bea ike bills. species that h hat hunt prey with following	ak lee nunt f off th	ish, and ne ground.	sign of the l		10	CO4	
	• interesti	ing behavior									
	STRATEG	Y:									
	 The secret is in the shape of the kingfisher's beak. It has a long and narrow cone beak, that enters the water without creating a compression wave below the surface or a noisy splash above. This helps bird to reach the fish in milliseconds, before the fish knows to flee. Length of the beak is critical here: the longer it is, the more gradually the angle of wedge expands. 										
	Potential:										
	 trains. He worn trains. So that 	ndered if th they don't c	e kingfishe reate thunde	neer of the co r's beak mig erous noise wh s for front of	ht se	rve as a n eaving tunn	nodel to red	esign			
	quieter kingfish	and more en her's beak.	fficient as t	he geometry	beca	me more li	ke the shape				

2. (Compare the process of photosynthesis to the functioning of photovoltaic cells.	10	CO4	L2
	bacteria.			
v	They explaine energy, nem sumight, to produced			
1				
2	chemical energy stored in glucose (a sugar).			
v				
V	soil.			
F	PHOTOVOLTAIC CELLS:	nthesis process is carried out by plants, algae, and some types of pure energy, from sunlight, to produce: (O2) and al energy stored in glucose (a sugar). res then obtain this energy by eating plants, and carnivores obtain it g herbivores. photosynthesis: plants take in CO2 and water H2O from the air and PLTAIC CELLS: nergy is captured by 2 engineering systems: photosynthetic plant cells tovoltaic cells (PV). nthesis converts solar energy into chemical energy. diacis turn solar energy into electricity which can be stored and used. he applications that contribute to bringing together photosynthesis and ltaics is the Photovoltaic cell. electronic device that converts the energy of light directly into ty by the photovoltaic effect fined as: The Device whose electrical characteristics, such as current, or resistance, vary when exposed to light. els. mmon single-junction, silicon solar cell, can produce, a maximum cuit voltage of approximately 0.5 volts to 0.6 volts. : the Locations -Alone Power. r in Space. ing-Related Needs. rry Uses. portation. ation of echolocation in ultrasonography explain echolocation to sound above human audible limit of 20 kHz. Ind of frequencies up to 10 MHz and beyond is used in medical is, therapy and surgery. tigative applications: sound source (transmitter) directs pulses into the body. te pulse encounters a boundary between organs or between two tissue		
v	Sun's energy is captured by 2 engineering systems: photosynthetic plant cells and photovoltaic cells (PV).			
v				
v				
v	One of the applications that contribute to bringing together photosynthesis and			
v				
v				
	solar panels.			
v				
	open-circuit voltage of approximately 0.5 volts to 0.6 volts.			
A	Application:			
1	Remote Locations			
2				
3				
4				
5	-			
6				
	Jsing application of echolocation in ultrasonography explain echolocation	10	CO3	L3
v	It refers to sound above human audible limit of 20 kHz.			
v	Ultrasound of frequencies up to 10 MHz and beyond is used in medical			
	diagnosis, therapy and surgery.			
v	In investigative applications:			
1	. An ultrasound source (transmitter) directs pulses into the body.			
2				
	regions of different densities, reflections of sound occur.			
-				
	various organs, a sonogram of the internal structure(s) can be generated.			
1	The method is called diagnostic imaging by echolocation.			

			<u>г</u>	
	 Diagnostic ultrasound(sonography or diagnostic medical sonography) : it's an 			
	imaging method that uses sound waves to produce images of structures within			
	your body			
	 Images provide valuable information for diagnosing and directing treatment 			
	for a variety of diseases.			
4.	Use a neat labeled diagram and explain the mechanism of filtration by the	10	CO3	L3
	nephrons.			
	 Kidneys remove wastes and extra fluid from the body. 			
	 Kidneys also remove acid that is produced by the cells of the body and 			
	maintain a healthy balance of water, salts, and minerals in blood.			8 S
	 Healthy kidneys filter about a half cup of blood every minute, removing 	1T	ne Nep	hro
	wastes and extra water to make urine.			
	MECHANISM OF FILTRATION:	Renal artery		-
	• Each kidney is made up of about a million filtering units called nephrons .	C	nerulus	
	• Each nephron includes a filter , called the glomerulus , and a tubule .	Gior	nerulus	
	The nephrons work through a two-step process :	Renal vein 🔶		
	1. the glomerulus filters blood, and		1	1
	2. the tubule returns needed substances to your blood and removes wastes.		t)-	
			4	1
	• Wastes and extra water become urine.			
I	The glomerulus filters your blood		K	J
	As blood flows into each nephron, it enters a cluster of tiny blood vessels—the		ų	
	glomerulus.		 Tubu	le
	The thin walls of the glomerulus allow smaller molecules, wastes, and fluid			
	mostly water—to pass into the tubule.			
	• Larger molecules, such as proteins and blood cells, stay in the blood vessel.			
	The tubule returns needed substances to your blood and removes wastes.			
	How does blood flow through my kidneys?			
	 Blood flows into the kidney through the renal artery. 			
	 This large blood vessel branches into smaller and smaller blood vessels until the blood reaches the newbrane. 			
	the blood reaches the nephrons.			
	 In the nephron, blood is filtered by tiny blood vessels of glomeruli and then flows out of kidney through renal vein. 			
	 Blood circulates through your kidneys many times a day. 			
	 Most of the water and other substances that filter through your glomeruli are 			
	returned to blood by tubules.			
	• Only 1 to 2 quarts become urine.			
	 When the kidney doesn't function properly, Chronic kidney disease 			
	occurs.			
		L		

5.	Explain the various blood substitutes	10	CO3	L2
	- Concerns that fixed development of blood substitutes are t			
	 Concerns that fueled development of blood substitutes are : Shortages in blood supplies and 			
	 Safety of donated blood 			
	 The 2 major types of blood substitutes are: 			
	1. Volume expanders: Include solutions (saline) that are used to replace lost plasma volume, and			
	2. Oxygen therapeutics: These are agents that replace oxygen normally carried			
	by hemoglobin in RBC			
	• Of these 2 types development of oxygen therapeutics has been the most			
	challenging.			
	• One of the first groups of agents developed and tested were Perfluorocarbons.			
	 They effectively transport and deliver oxygen to tissues but cause complex side effects and are not metabolized by the body. 			
	 Other oxygen therapeutics include agents called Hemoglobin-Based Oxygen 			
	Carriers (HBOCs).			
	 These are made by genetically or chemically engineering hemoglobin. 			
	 HBOC's Benefits: 			
	 HBOC's do not require refrigeration. 			
	 They are compatible with all blood types and 			
	 They efficiently distribute oxygen to tissues. 			
	 A primary concern associated with HBOCs is their potential to cause severe immune reactions. 			
	 Blood from human umbilical cord has been studied so as to substitute RBC's 			
	for transfusion.			
	• RBC's can be extracted from cord blood via sedimentation as the blood is			
	cooled.			
	 Research about the transfusion is ongoing. 			
	 Concern for their implementation are: 			
	 Establishment of safe, effective and ethical procedures for cord blood 			
	collection.			
	 Development of criteria that help to ensure safe transfusion and 			
	 Preservation of cord blood quality. 			
	Hemoglobin-Based Oxygen Carriers:			
	 HBOCs are "made of" natural hemoglobins that were originally developed as blood substitutes. 			
	 Addition of HBOCs to traditional preservation protocols provides: 			
	\checkmark more oxygen to organs, to meet their energy metabolic needs,			
	 rolongs preservation time, 			
	 reduces ischemia-reperfusion injury to grafts, 			
	✓ improves graft quality, and			
	 even increases the number of transplantable donors. 			
	· •			


	Perflourocarbons:			
	 PFCs remain in bloodstream for about 48 hours. PFCs were the first group of artificial blood products studied by scientists, because of their oxygen-dissolving ability. PFCs are usually white and are a good oxygen carriers. PFCs must be emulsified before they can be given to patients, since they do not mix with blood. Researchers are now trying to find out if they can reduce swollen brain tissue in traumatic brain injury using PFCs. PFC particles may cause flu-like symptoms in some patients when they exhale these compounds. 			
6.	Write a short note on	10	CO3	L2
	i. Chronic obstructive pulmonary disease (5m)			
	 It's a chronic inflammatory lung disease that causes obstructed airflow from the lungs. Symptoms include breathing difficulty, cough, mucus (sputum) production, and wheezing. It's typically caused by long-term exposure to irritating gases or particulate matter, most often from cigarette smoke. People with COPD are at increased risk of developing heart disease, lung cancer, and variety of other conditions. Emphysema and chronic bronchitis are the 2 most common conditions that contribute to COPD. These two conditions usually occur together and can vary in severity among individuals with COPD. Symptoms: 			
	 COPD symptoms often don't appear until significant lung damage has occurred, and they usually worsen over time, particularly if smoking exposure continues. 			
	Signs and symptoms of COPD may include:			
	 Shortness of breath, especially during physical activities Wheezing Chest tightness A chronic cough that may produce mucus (sputum) that may be clear, white, yellow, or greenish Frequent respiratory infections Lack of energy Unintended weight loss (in later stages) Swelling in ankles, feet, or legs Tests may include:			
	Lung (pulmonary) function tests.			

Chest X-ray.

- \succ CT scan.
- Arterial blood gas analysis.
- Laboratory tests.
- There's no current cure for COPD, but quitting smoking, using a spirometer, and following an exercise plan can help manage symptoms.

ii. Spirometry (5m)

- Spirometry uses a machine called a spirometer. A spirometer is a medical device that consists of a mouthpiece and a tube.
- They connect to a machine that measures your airflow.
- It is the most common of the pulmonary function tests.
- It measures lung function, specifically the amount and/or speed of air that can be inhaled and exhaled
- And used to diagnose Asthma, COPD and other conditions that affect breathing.
- Requirements of an acceptable spirometer are:
- 1. Spirometers must be able to accumulate volume for ≥ 15 s.
- 2. The measuring volume should be ≥ 8 L (body temperature and pressure, saturated).
- 3. The accuracy of reading should be at least $\pm 3\%$ (or ± 0.05 L) with flows from 0–14 Liters per second.
- The total resistance to airflow at 14 Liters per second should be <1.5 cm H₂O per Liters per second (<0.15 kPa per Liters per second).

