USN					

Internal Assessment Test 3 – AUG 2024

Sub: Analysis and Design of Algorithms Date: 07-08-2024 Duration: 90 mins Max Marks: 50 Sem / Sec: IV (A, B & C) OBE Answer any FIVE FULL Ouestions MARK CO RB T 1 (a) Apply Backtracking method to solve sum of subset problem for the instance d=30, S={5,10,12,15,18}. Give all possible solution with state space tree construction 10 CO5 L3 1 (a) S={5,10,12,15,18}. Give all possible solution with state space tree construction 10 CO5 L3 1 (a) S={5,10,12,15,18}. Give all possible solution with state space tree construction 10 CO5 L3 2 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 2 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 2 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 3 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 4 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 5 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 6 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 7 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 6 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 7 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 8 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 7 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 8 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 9 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L3 1 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 C	Sub:	Analonia and i	Dagion of Ala		Assessment 1	0500		BCS401	Duomolo	CSE		
Answer any FIVE FULL Questions Answer any FIVE FULL Questions Sec: IV (A, B & C) Answer any FIVE FULL Questions 1 (a) Apply Backtracking method to solve sum of subset problem for the instance d=30, S={5,10,12,15,18}. Give all possible solution with state space tree construction 10 CO5 L3	Sub.	Analysis and	Design of Aig	OHUIIIIS				DC3401	Diancii.	CSE		
Answer any FIVE FULL Questions Answer any FIVE FULL Questions	Date:	07-08-2024	Duration:	90 mins	Max Marks:	50		IV (A	, B & C)		OB	BE .
Answer any FIVE FOLL Questions I (a) Apply Backtracking method to solve sum of subset problem for the instance d=30, S={5,10,12,15,18}. Give all possible solution with state space tree construction I (a) S={5,10,12,15,18}. Give all possible solution with state space tree construction I (a) S={5,10,12,15,18}. Give all possible solution with state space tree construction I (a) S={5,10,12,15,18}. Give all possible solution with state space tree construction I (b) W 012 W 012 W 012 W 012 W 013 W 01								l .	MA	\ R K	CO	RB
S={5,10,12,15,18}. Give all possible solution with state space tree construction S			<u>Ansv</u>	ver any FIV	<u>E FULL Que</u>	<u>stıon</u>	<u>S</u>					
S={5,10,12,15,18}. Give all possible solution with state space tree construction S	1 (a)	Apply Backtra	acking meth	nod to solve	sum of subse	et pro	oblem for th	ne instance d=	=30,	10	CO5	L3
10 12 15 1.5 target 30 10 12 15 1.5 target 30 10 10 10 10 10 10 10												
10 12 15 1 5 target 30 10 12 15 1 5 target 30 10 10 10 10 10 10 10							_					
10 12 15 1.5 target 30 10 12 15 1.5 target 30 10 10 10 10 10 10 10												
5 10 12 15 1 8 target 30 WIO 10 WIO						The same		CMR				
5 10 12 15 1 8 target 30 WIO 10 WIO			nine Sot		2 1 2		1 0 1 -1	1				
WID S WID		10			- 0.15	0	1- 1- 0:					
WID			5	10	12 15 1.	0	targa s	O. Joy				
WID												
WID					5 (0)		14					
WI2 W/012 W/				Wilms		Wlo 5	10					
WI2 W/012 W/				1	31 21 0		-					
WI2 W/012 W/			(5		10 12 22		0	5)				
W12 W1012 W12 W12 W1012 (2) (2) (2) (30) (30) (30) (30) (30) (30) (30) (30			WIO	WIOID	10 19 22		MIO	WIOTO				
W12 W1012 W12 W1012 W15 W1012 W15 W1015 W1			/(1	01		(6)	WIO WIO	12			
97+15>30 W15 W10 S W1015 27 12 W15 W1015 22+15>30 W15 So >30 Solution 15+18>30 Solut				(5)	10 12 22			2	(A)			
15 15 1841		W12	WOIL	10/12/	W/12		6	WIS WA	9			
97+15>30 W15 W16 >90 S W15 W15 >30 >90 S +18<30 S +18<30 S +18<30 S +18<30		1	171	1	6		(2)	X (5) (0			
97+15>30 W15 W/6 >90 5 (5) (5) (5) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6		(21)	(15)	UZ.	Was		22+15>30 NB/	27418	12+19			
Solution 15+18>30 (6) (5) (25) (6) (25) (6) (6) (25) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7		92415 W	5 XW/0	18115	WIS		1	>30	>30			
Solution 15+18>30 20+18>30 5+18<30		1119/30		1	60 6	01	(25)	(10)				
Solution 15+18>30 20+18>30 5+18<30		(30)	/ (13		(20)	,	45118	02 10418780				
		CIT	/	21	SH8>30 SH18	130	25+107	30 10418430				
2 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2		Sillo	1 15418	3730								
2 (a) Plan alle state space are to generate solutions to 4 queen's problem	2 (a)	Draw the state	e snace tree	to generate	solutions to 4	-0116	en's probler	n		5	CO5	L2
		Liuvi die state	space nec	to Somerate	5514115115 10 4	4400	on a proorer	**				_ _

A message contransmitted over Character					ble below h	nas to be	10	CO4	L3
Probability	0.4	0.2	0.3	0.1					
a)Construct th Label:Left(0),Ri b)Derive the Hu c)Decode the tes d)Encode the tes	ight(1)) ffman c xt whos	ode for e encod	the giv	en chara	characters	(Branch			

	Character	Code							
	A	0							
	м	101							
1887	R	11		F					
100	-	100							
(lii)		\ => _AM		j					
	R A M A J J J J II O IDI D	1 1 1	V. K	₩.					
Apply the	memory function roblem with capacit	RAMAR => 1 method to solv	01010	olodil.		of the	10	CO4	
Apply the Knapsack p	memory function roblem with capacit	RAMAR => 1 method to solv y M=5	01010	olodil.		of the	10	CO4	
Apply the Knapsack p	memory function roblem with capacit	method to solvy M=5	01010	olodil.		of the	10	CO4	
Apply the Knapsack policy Item	memory function roblem with capacit Weight	method to solvy M=5 Value	01010	olodil.		of the	10	CO4	
Apply the Knapsack policy of the Knapsack pol	memory function roblem with capacit Weight 2	method to solvy M=5 Value 12 10	01010	olodil.		of the	10	CO4	
Item 1 2 3	weight 2 1 3	method to solvy M=5 Value 12 10 20	01010	olodil.		of the	10	CO4	
Apply the Knapsack position Item 1 2	memory function roblem with capacit Weight 2	method to solvy M=5 Value 12 10	01010	olodil.		of the	10	CO4	

Find the tota									
Ans:- 34	ep18 cal		1 0	ut ratio.	et/wegut				
-	îtems L	Profit	5		6	400			
	- -2	20	10		2				
	~ 3	100	20	0	5				
4.1	4	90	31	0	3				
1	5	160	4	-0	7	3 10			
200		ranse all		in non-asce	nding order	of Profet/			
	items	projet	werght	Pegit/weight	Remaining Weight	Total Broffet			
		30	5	в 5	60-5=55kg 55-20=35kg	30 30+100			
	3	160	20 40	4	35-35=014	35x 160 + 130			
*A**	4	90	30 10	2					
	Total po	20 nogit = <u>(35</u> 40 nogit =		130 = 140+1	30 = 170				
Write the al 10,1,0,2,5,6		f Counting	Sort.Sort	the following	numbers using	the same.	5	CO3	Ι
Apply the b	ranch and	bound to s	solve the i	nstance of 0/1	knapsack prob	lem	10	CO5	Ι
Item	1		2	3	4				
Weight	4		7	5	3				
Profit	\$40		\$42	\$25	\$1				

