| USN | | | | | | |-----|--|--|--|--|--| ## Internal Assessment Test 3 – AUG 2024 | Sub: Analysis and Design of Algorithms Date: 07-08-2024 Duration: 90 mins Max Marks: 50 Sem / Sec: IV (A, B & C) OBE Answer any FIVE FULL Ouestions MARK CO RB T 1 (a) Apply Backtracking method to solve sum of subset problem for the instance d=30, S={5,10,12,15,18}. Give all possible solution with state space tree construction 10 CO5 L3 1 (a) S={5,10,12,15,18}. Give all possible solution with state space tree construction 10 CO5 L3 1 (a) S={5,10,12,15,18}. Give all possible solution with state space tree construction 10 CO5 L3 2 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 2 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 2 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 3 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 4 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 5 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 6 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 7 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 6 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 7 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 8 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 7 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 8 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 9 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L3 1 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 CO5 C | Sub: | Analonia and i | Dagion of Ala | | Assessment 1 | 0500 | | BCS401 | Duomolo | CSE | | | |--|-------|-----------------|---------------|--------------|-------------------|--------------|--------------|----------------|----------|-------|-----|------------| | Answer any FIVE FULL Questions Answer any FIVE FULL Questions Sec: IV (A, B & C) Answer any FIVE FULL Questions 1 (a) Apply Backtracking method to solve sum of subset problem for the instance d=30, S={5,10,12,15,18}. Give all possible solution with state space tree construction 10 CO5 L3 | Sub. | Analysis and | Design of Aig | OHUIIIIS | | | | DC3401 | Diancii. | CSE | | | | Answer any FIVE FULL Questions Answer any FIVE FULL Questions | Date: | 07-08-2024 | Duration: | 90 mins | Max Marks: | 50 | | IV (A | , B & C) | | OB | BE . | | Answer any FIVE FOLL Questions I (a) Apply Backtracking method to solve sum of subset problem for the instance d=30, S={5,10,12,15,18}. Give all possible solution with state space tree construction I (a) S={5,10,12,15,18}. Give all possible solution with state space tree construction I (a) S={5,10,12,15,18}. Give all possible solution with state space tree construction I (a) S={5,10,12,15,18}. Give all possible solution with state space tree construction I (b) W 012 W 012 W 012 W 012 W 013 01 | | | | | | | | l . | MA | \ R K | CO | RB | | S={5,10,12,15,18}. Give all possible solution with state space tree construction S | | | <u>Ansv</u> | ver any FIV | <u>E FULL Que</u> | <u>stıon</u> | <u>S</u> | | | | | | | S={5,10,12,15,18}. Give all possible solution with state space tree construction S | 1 (a) | Apply Backtra | acking meth | nod to solve | sum of subse | et pro | oblem for th | ne instance d= | =30, | 10 | CO5 | L3 | | 10 12 15 1.5 target 30 10 12 15 1.5 target 30 10 10 10 10 10 10 10 | | | | | | | | | | | | | | 10 12 15 1 5 target 30 10 12 15 1 5 target 30 10 10 10 10 10 10 10 | | | | | | | _ | | | | | | | 10 12 15 1.5 target 30 10 12 15 1.5 target 30 10 10 10 10 10 10 10 | | | | | | | | | | | | | | 5 10 12 15 1 8 target 30 WIO 10 | | | | | | The same | | CMR | | | | | | 5 10 12 15 1 8 target 30 WIO 10 | | | nine Sot | | 2 1 2 | | 1 0 1 -1 | 1 | | | | | | WID S WID | | 10 | | | - 0.15 | 0 | 1- 1- 0: | | | | | | | WID | | | 5 | 10 | 12 15 1. | 0 | targa s | O. Joy | | | | | | WID | | | | | | | | | | | | | | WID | | | | | 5 (0) | | 14 | | | | | | | WI2 W/012 W/ | | | | Wilms | | Wlo 5 | 10 | | | | | | | WI2 W/012 W/ | | | | 1 | 31 21 0 | | - | | | | | | | WI2 W/012 W/ | | | (5 | | 10 12 22 | | 0 | 5) | | | | | | W12 W1012 W12 W12 W1012 (2) (2) (2) (30) (30) (30) (30) (30) (30) (30) (30 | | | WIO | WIOID | 10 19 22 | | MIO | WIOTO | | | | | | W12 W1012 W12 W1012 W15 W1012 W15 W1015 W1 | | | /(| 1 | 01 | | (6) | WIO WIO | 12 | | | | | 97+15>30 W15 W10 S W1015 27 12 W15 W1015 22+15>30 W15 So >30 Solution 15+18>30 Solut | | | | (5) | 10 12 22 | | | 2 | (A) | | | | | 15 15 1841 | | W12 | WOIL | 10/12/ | W/12 | | 6 | WIS WA | 9 | | | | | 97+15>30 W15 W16 >90 S W15 W15 >30 >90 S +18<30 S +18<30 S +18<30 S +18<30 | | 1 | 171 | 1 | 6 | | (2) | X (5) (| 0 | | | | | 97+15>30 W15 W/6 >90 5 (5) (5) (5) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6 | | (21) | (15) | UZ. | Was | | 22+15>30 NB/ | 27418 | 12+19 | | | | | Solution 15+18>30 (6) (5) (25) (6) (25) (6) (6) (25) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7 | | 92415 W | 5 XW/0 | 18115 | WIS | | 1 | >30 | >30 | | | | | Solution 15+18>30 20+18>30 5+18<30 | | 1119/30 | | 1 | 60 6 | 01 | (25) | (10) | | | | | | Solution 15+18>30 20+18>30 5+18<30 | | (30) | / (13 | | (20) | , | 45118 | 02 10418780 | | | | | | | | CIT | / | 21 | SH8>30 SH18 | 130 | 25+107 | 30 10418430 | | | | | | 2 (a) Draw the state space tree to generate solutions to 4-queen's problem 5 CO5 L2 | | Sillo | 1 15418 | 3730 | | | | | | | | | | 2 (a) Plan alle state space are to generate solutions to 4 queen's problem | 2 (a) | Draw the state | e snace tree | to generate | solutions to 4 | -0116 | en's probler | n | | 5 | CO5 | L2 | | | | Liuvi die state | space nec | to Somerate | 5514115115 10 4 | 4400 | on a proorer | ** | | | | _ _ | | | | | | | | | | | | | | | | A message contransmitted over Character | | | | | ble below h | nas to be | 10 | CO4 | L3 | |---|--------------------------------|--------------------|---------|----------|-------------|-----------|----|-----|----| | Probability | 0.4 | 0.2 | 0.3 | 0.1 | | | | | | | a)Construct th
Label:Left(0),Ri
b)Derive the Hu
c)Decode the tes
d)Encode the tes | ight(1))
ffman c
xt whos | ode for
e encod | the giv | en chara | characters | (Branch | | | | | | Character | Code | | | | | | | | |--|--|--|-------|---------|--|--------|----|-----|--| | | A | 0 | | | | | | | | | | м | 101 | | | | | | | | | 1887 | R | 11 | | F | | | | | | | 100 | - | 100 | | | | | | | | | (lii) | | \ => _AM | | j | | | | | | | | R A M A
J J J J
II O IDI D | 1 1 1 | V. K | ₩. | | | | | | | Apply the | memory function roblem with capacit | RAMAR => 1 method to solv | 01010 | olodil. | | of the | 10 | CO4 | | | Apply the Knapsack p | memory function roblem with capacit | RAMAR => 1 method to solv y M=5 | 01010 | olodil. | | of the | 10 | CO4 | | | Apply the Knapsack p | memory function roblem with capacit | method to solvy M=5 | 01010 | olodil. | | of the | 10 | CO4 | | | Apply the Knapsack policy Item | memory function roblem with capacit Weight | method to solvy M=5 Value | 01010 | olodil. | | of the | 10 | CO4 | | | Apply the Knapsack policy of pol | memory function roblem with capacit Weight 2 | method to solvy M=5 Value 12 10 | 01010 | olodil. | | of the | 10 | CO4 | | | Item 1 2 3 | weight 2 1 3 | method to solvy M=5 Value 12 10 20 | 01010 | olodil. | | of the | 10 | CO4 | | | Apply the Knapsack position Item 1 2 | memory function roblem with capacit Weight 2 | method to solvy M=5 Value 12 10 | 01010 | olodil. | | of the | 10 | CO4 | | | Find the tota | | | | | | | | | | |---------------------------|-------------------|---|-------------|----------------|-------------------------|------------------|----|-----|---| | Ans:- 34 | ep18 cal | | 1 0 | ut ratio. | et/wegut | | | | | | - | îtems
L | Profit | 5 | | 6 | 400 | | | | | | -
-2 | 20 | 10 | | 2 | | | | | | | ~
3 | 100 | 20 | 0 | 5 | | | | | | 4.1 | 4 | 90 | 31 | 0 | 3 | | | | | | 1 | 5 | 160 | 4 | -0 | 7 | 3 10 | | | | | 200 | | ranse all | | in non-asce | nding order | of Profet/ | | | | | | items | projet | werght | Pegit/weight | Remaining
Weight | Total
Broffet | | | | | | | 30 | 5 | в
5 | 60-5=55kg
55-20=35kg | 30
30+100 | | | | | | 3 | 160 | 20
40 | 4 | 35-35=014 | 35x 160 + 130 | | | | | *A** | 4 | 90 | 30
10 | 2 | | | | | | | | Total po | 20
nogit = <u>(35</u>
40
nogit = | | 130 = 140+1 | 30 = 170 | | | | | | Write the al 10,1,0,2,5,6 | | f Counting | Sort.Sort | the following | numbers using | the same. | 5 | CO3 | Ι | | Apply the b | ranch and | bound to s | solve the i | nstance of 0/1 | knapsack prob | lem | 10 | CO5 | Ι | | Item | 1 | | 2 | 3 | 4 | | | | | | Weight | 4 | | 7 | 5 | 3 | | | | | | Profit | \$40 | | \$42 | \$25 | \$1 | | | | |