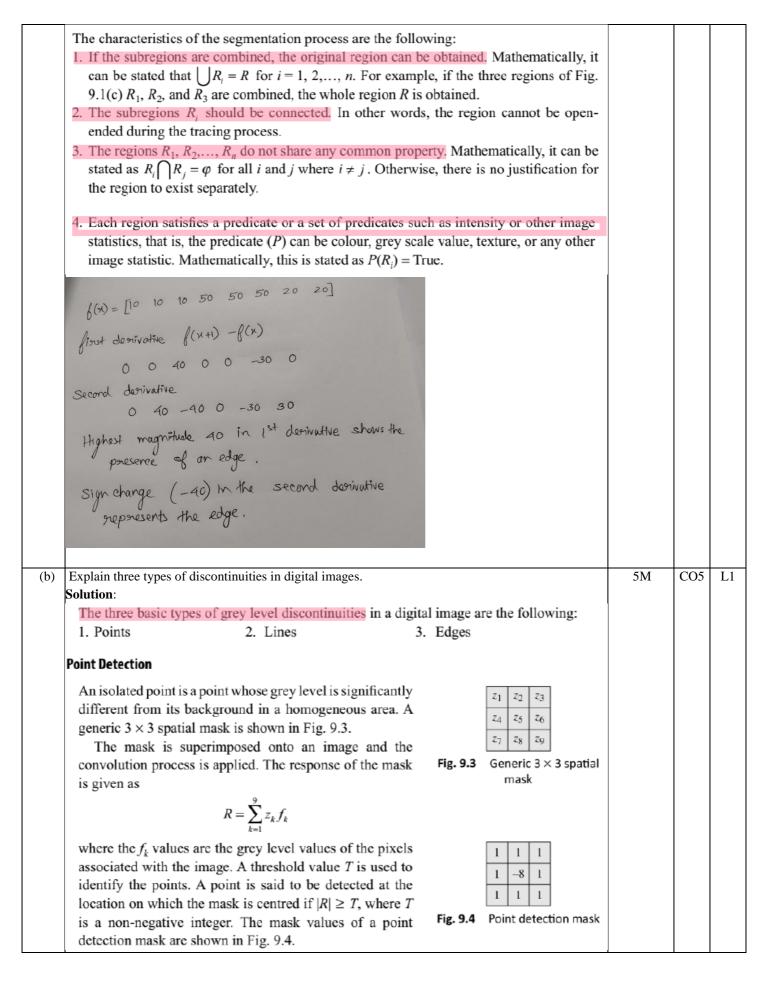
USN					

Internal Assessment Test 3 – July 2024


Sub:	Computer Grap	phics and Fundamentals of I	mage Processing	Sub Code:	21CS63	Branch:	CSE		
Date:	29.07.2024	Duration: 90 mins	Max Marks: 50	Sem/Sec:	6 A	, B, C		OB	BE
			E FULL Questions			MA	RKS	CO	RBT
1 (a)	Key Frame k FIGURE 8 An edge with vertex position into two connected edges The preproce following two 1. Divide	We can state gene either the number of first consider equalizinumber of line segme number of lines to be Lmax Next we compute the	an object using edge an object using edge are all preprocessing rules adges or the number of very large the edge count, when the interior in two consecutive for equalized can be determined by the equalized can be equalized by the equalized can be determined by the equalized can be equalized by the equalized can be equalized by the equalized can be equalized by the e	for equalizing ertices to be added parameters of the parameters of	key frames in term ded to a key frame L_k and L_{k+1} denot ximum and minin L_{k+1}) Tay Frame K Segment in key in key frame $k+1$.	ms of e. We e the num (1) (2)	MKS 6M	CO	L2
(b)	Discuss 'squash	and stretch' and 'timing' ted	chniques with proper	diagrams.		4	4M	CO3	L1
	Solution:								

One of the most important techniques for simulating acceleration effects, particularly for nonrigid objects, is squash and stretch. Figure 4 shows how this technique is used to emphasize the acceleration and deceleration of a bouncing ball. As the ball accelerates, it begins to stretch. When the ball hits the floor and stops, it is first compressed (squashed) and then stretched again as it accelerates and bounces upwards. Another technique used by film animators is timing, which refers to the spacing between motion frames. A slower moving object is represented with more closely spaced frames, and a faster moving object is displayed with fewer frames over the path of the motion. This effect is illustrated in Figure 5, where the position changes between frames increase as a bouncing ball moves faster. Object movements can also be emphasized by creating preliminary actions that indicate an anticipation of a coming motion. For example, a cartoon character Squash FIGURE 5 FIGURE 4 A bouncing-ball illustration of the "squash and stretch" technique The position changes between motion frames for a bouncing bal increase as the speed of the ball increases. for emphasizing object acceleration CO3 L2 Explain articulated figure animation and motion capture techniques used for character animation. 6M Solution: **Articulated Figure Animation** A basic technique for animating people, animals, insects, and other critters is to model them as articulated figures, which are hierarchical structures composed of a set of rigid links that are connected at rotary joints (Figure 17). In less formal terms, this just means that we model animate objects as moving stick figures, or simplified skeletons, that can later be wrapped with surfaces representing skin, hair, fur, feathers, clothes, or other outer coverings. The connecting points, or hinges, for an articulated figure are placed at the shoulders, hips, knees, and other skeletal joints, which travel along specified motion paths as the body moves. For example, when a motion is specified for an object, the shoulder automatically moves in a certain way and, as the shoulder moves, the arms move. Different types of movement, such as walking, running, or jumping, are defined and associated with particular motions for the joints and connecting links. FIGURE 17 A series of walking leg motions, for instance, might be defined as in A simple articulated figure with nine Figure 18. The hip joint is translated forward along a horizontal line, while joints and twelve connecting links, not the connecting links perform a series of movements about the hip, knee, and counting the oval head. angle joints. Starting with a straight leg [Figure 18(a)], the first motion is a knee bend as the hip moves forward [Figure 18(b)]. Then the leg swings forward, returns to the vertical position, and swings back, as shown in Figures 18(c), (d), and (e). The final motions are a wide swing back and a return to the straight vertical position, as in Figures 18(f) and (g). This motion cycle is repeated for the duration of the animation as the figure moves over a specified distance or time As a figure moves, other movements are incorporated into the various joints. A sinusoidal motion, often with varying amplitude, can be applied to the hips so

that they move about on the torso. Similarly, a rolling or rocking motion can be

imparted to the shoulders, and the head can bob up and down.

Motion Capture	the state of the s			
An alternative to determining the digitally record the movement of animated character on that informs or mo-cap, can be used when the (as in a scripted scene). The animal movements as the live actor. The classic motion capture test strategic positions on the actor's be joints. It is possible to place the mart they are affixed to a special skintig them filmed performing the scene to identify the positions of the mart tions are translated to coordinates. positioning of the body of the animal stranslations are translated to coordinates.	e motion of a character computationally is to a live actor and to base the movement of an ation. This technique, known as motion capture movement of the character is predetermined ted character will perform the same series of chnique involves placing a set of markers at ody, such as the arms, legs, hands, feet, and kers directly on the actor, but more commonly the body suit worn by the actor. The actor is Image processing techniques are then used kers in each frame of the film, and their positives in each frame of the film, and their positives coordinates are used to determine the ated character. The movement of each marker acked and used to control the corresponding or.			
(b) Discuss various openGL functions used to p Solution:	perform double buffering operations.	4M	CO3	L3
glutInitDisplayMode (GLUT	_DOUBLE);			
buffer for the current display win	e front buffer and the back buffer, that we can use play. While one buffer is acting as the refresh dow, the next frame of an animation can be specify when the roles of the two buffers are			
<pre>glutSwapBuffers ();</pre>				
	suffer operations are available on a system, we			
glGetBooleanv (GL_DOUBLEB	JFFER, status);			
A value of GL TRUE is returned to a	rray parameter status if both front and back therwise, the returned value is GL. FALSE			
glutIdleFunc (animationFcr):			
cedure is continuously executed wh	an be assigned the name of a procedure that is nenting the animation parameters. This pro- nenever there are no display-window events be glutIdleFunc, we set its argument to the			
			CO5	L3

Line Detection

In line detection, four types of masks are used to get the responses, that is, R_1 , R_2 , R_3 , and R_4 for the directions vertical, horizontal, +45°, and -45°, respectively. The masks are shown in Fig. 9.5(a).

These masks are applied to the image. The response of the mask is given as $R_k = \sum_{k=1}^{4} z_k f_k$.

 R_1 is the response for moving the mask from the left to the right of the image. R_2 is the response for moving the mask from the top to the bottom of the image. R_3 is the response of the mask along the +45° line and R_4 is the response of the mask with respect to a line of -45°. Suppose at a certain line on the image, $|R_i| > |R_j| \ \forall j \neq i$, then that line is more likely to be associated with the orientation of the mask. The final maximum response is defined by $\max_{i=1}^4 \{R_i\}$ and the line is associated with that mask. A sample image and the results of the line-detection algorithm are shown in Fig. 9.5(b).

$$\boldsymbol{M}_{1} = \begin{pmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{pmatrix}, \boldsymbol{M}_{2} = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{pmatrix}, \boldsymbol{M}_{3} = \begin{pmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix}, \boldsymbol{M}_{4} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

Fig. 9.5 Line detection (a) Mask for line detection

EDGE DETECTION

Edges play a very important role in many image processing applications. They provide an outline of the object. In the physical plane, edges correspond to the discontinuities in depth, surface orientation, change in material properties, and light variations. These variations are present in the image as grey scale discontinuities. An edge is a set of connected pixels that lies on the boundary between two regions that differ in grey value. The pixels on an edge are called edge points. A reasonable definition of an edge requires the ability to measure grey level transitions in a meaningful manner. Most edges are unique in space, that is, their position and orientation remain the same in space when viewed from different points. When an edge is detected, the unnecessary details are removed, while only the important structural information is retained. In short, an edge is a local concept which represents only significant intensity transitions. An original image and its edges are shown in Figs 9.6(a) and 9.6(b), respectively.

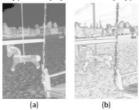


Fig. 9.6 Edge detection (a) Original image (b) Extracted edges

4 (a)	Explain the Canny edge detection algorithm.	6M	CO5	L1
	Solution:			

9.4.4.4 Canny edge detection			
The Canny approach is based on optimizing the trade-off between two performance criteria			i
and can be described as follows:			1
 Good edge detection—The algorithm should detect only the real edge points and discard all false edge points. 			1
Good edge localization—The algorithm should have the ability to produce edge points			Ī
that are closer to the real edges.			Ī
3. Only one response to each edge—The algorithm should not produce any false, double,			ì
or spurious edges.			i 1
The Canny edge detection algorithm is given as follows:			i 1
 First convolve the image with the Gaussian filter. Compute the gradient of the resultant smooth image. Store the edge magnitude and edge orientation separately in two arrays, M(x, y) and α(x, y), respectively. 			
2. The next step is to thin the edges. This is done using a process called <i>non-maxima</i>			i 1
suppression. Examining every edge point orientation is a computationally intensive			i 1
task. To avoid such intense computations, the gradient direction is reduced to just four			ì
sectors. How? The range of 0-360° is divided into eight equal portions. Two equal portions are designated as one sector. Therefore there will be four sectors. The gradient			ÎI
direction of the edge point is first approximated to one of these sectors. After the sector			ÎI
is finalized, let us assume a point of $M(x, y)$. The edge magnitudes $M(x_1, y_1)$ and $M(x_2, y_2)$			ÎI
y_2), of two neighbouring pixels that fall on the same gradient direction, are considered.			i I
If the magnitude of the point $M(x, y)$ is less than the magnitude of the points (x_1, y_1) or (x_2, y_2) , then the value is suppressed, that is, the value is set to zero; otherwise the value			1
(x_2, y_2) , then the value is suppressed, that is, the value is set to zero, otherwise the value is retained.			1
3. Apply hysteresis thresholding. The idea behind hysteresis thresholding is that only a large			1
amount of change in the gradient magnitude matters in edge detection and small changes			1
do not affect the quality of edge detection. This method uses two thresholds, t_0 and t_1 .			1
If the gradient magnitude is greater than the value t_1 , it is considered as a definite edge point and is accepted. Similarly, if the gradient magnitude is less than t_0 , it is considered			1
as a weak edge point and removed. However, if the edge gradient is between t_0 and t_1 ,			1
it is considered as either weak or strong based on the context. This is implemented by			1
Define Laplacian of the 2D function f (x, y). Also, discuss different laplacian masks used in	4M	CO5	L
digital image processing techniques.	11.2		_
Solution:			1
This ∇^2 operator is called Laplacian operator. The Laplacian of the 2D function $f(x,y)$			1
is also defined as $\frac{\partial^2 f(x,y)}{\partial y^2} = \frac{\partial^2 f(x,y)}{\partial y^2} = \frac$			1
$\nabla^2 f(x, y) = \frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial y^2}$			1
0 1 0 1 0 1 1 1 1 1 -2 1			1
1 -4 1 0 -4 0 1 -8 1 -2 4 -2			ii
0 1 0 1 0 1 1 1 1 1 -2 1			il
			i I
(a) (b) (c) (d)			1
Fig. 9.12 Different Laplacian masks (a) Laplacian filter			1
(b) 45° rotated mask (c) Variant 1 (d) Variant 2			i
(b) 45° rotated mask (c) Variant 1 (d) Variant 2 For the image below, apply the following operators to detect the edges. 1. Perwitt Operator	5M +	CO5	L

2. Sobel Operator	5M		
$F = \begin{bmatrix} 5 & 5 & 5 \end{bmatrix}$			
$F = \begin{pmatrix} 1 & 2 & 5 \\ 5 & 5 & 5 \\ 5 & 3 & 2 \end{pmatrix}$			
Solution:			
(i) Sobel operation: $Mx = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 2 & 1 \end{bmatrix}, My = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$ New image $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 5 & 0 \\ 0 & 5 & 5 & 5 & 0 \\ 0 & 5 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ Applying Mx on 1, 2, 5, 5, 5, 5, 5, 3, 2,			
Mx = \begin{pmatrix} 15 & 20 & 15 \\ 9 & 3 & -5 \\ -15 & -20 & -15 \end{pmatrix} Applying My on each pixel			
$My = \begin{bmatrix} 9 & 8 & -9 \\ 15 & 1 & -15 \\ 11 & -6 & -11 \end{bmatrix}$ Now magnitude $\int M_{x}^{2} + My^{2}$			
New values = $\begin{bmatrix} 17 & 22 & 17 \\ 17 & 3 & 16 \\ 19 & 21 & 19 \end{bmatrix}$ Threshold = $\begin{bmatrix} 17 + 22 + 17 + 17 + 3 + 16 + 19 + 21 + 19 \end{bmatrix}$ $= \begin{bmatrix} 17 & 22 & 17 & 19 \end{bmatrix}$			
: New matorx after applying threshold			
6(a) Define Image Segmentation compare and contrast Contextual and Non-Contextual algorithms. Solution:	4M	CO5	L2
Image segmentation has emerged as an important phase in image-based applications. Segmentation is the process of partitioning a digital image into multiple regions and extracting a meaningful region known as the region of interest (ROI). Regions of interest vary with applications. For example, if the goal of a doctor is to analyse the tumour in a computer tomography (CT) image, then the tumour in the image is the ROI. Similarly, if			

1. Contextual (region-based or global) algorithms			
2. Non-contextual (pixel-based or local) algorithms			
Contextual algorithms group pixels together based on common properties by exploited the relationships that exist among the pixels. These are also known as region-based global algorithms. In region-based algorithms, the pixels are grouped based on some of similarity that exists between them. Non-contextual algorithms are also known as placed or local algorithms. These algorithms ignore the relationship that exists between the pixels or features. Instead, the idea is to identify the discontinuities that are presented image such as isolated lines and edges. These are then simply grouped into a rebased on some global-level property. Intensity-based thresholding is a good example this method.	ed or e sort pixel- ween ent in egion		
(b) List first-order edge detection operators and explain any two in detail.	6M	CO5	L1
Solution: Roberts Operator, Sobel Operator and Prewitt Operator.			
9.4.3.2 Prewitt operator			
The Prewitt method takes the central difference of the neighbouring pixels; this difference can be represented mathematically as	rence		
$\frac{\partial f}{\partial x} = f(x+1) - f(x-1)/2$			
For two dimensions, this is			
f(x+1,y)-f(x-1,y)/2			
The central difference can be obtained using the mask $[-1\ 0\ +1]$. This method is sensitive to noise. Hence to avoid noise, the Prewitt method does some averaging. Prewitt approximation using a 3×3 mask is as follows:	-		
$\nabla f \cong (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3) + (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7) $			
This approximation is known as the Prewitt operator. Its masks are as follows:			
$M_{x} = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \text{ and } M_{y} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$			

9.4.3.3 Sobel operator

The Sobel operator also relies on central differences. This can be viewed as an approximation of the first Gaussian derivative. This is equivalent to the first derivative of the Gaussian blurring image obtained by applying a 3×3 mask to the image. Convolution is both commutative and associative, and is given as

$$\frac{\partial}{\partial x}(f * G) = f * \frac{\partial}{\partial x}G$$

A 3×3 digital approximation of the Sobel operator is given as

$$\nabla f \cong |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| + |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$$

The masks are as follows:

$$M_x = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} \text{ and } M_y = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

An additional mask can be used to detect the edges in the diagonal direction.

$$M_x = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{pmatrix} \text{ and } M_y = \begin{pmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

CI CCI HOD