
USN

Internal Assessment Test 3 – July 2024

Sub: Data Science and Visualization (Professional Elective) Sub Code: 21CS644 Branch: CSE

Date: 31.7.2024 90 mins Max Marks: 50 Sem/Sec: VI/ A, B, C OBE

 Answer any FIVE FULL Questions MARKS CO RBT

1 Explain the importance of data visualization with help of Matplotlib.pyplot. Discuss the

anatomy of a Figure.

Answer: importance -3 marks , Anatomy of figure- 7 marks

Data visualization is essential in interpreting and understanding complex data, as it

transforms numbers and statistics into visuals that are easier to analyze and

communicate. In Python, matplotlib.pyplot is a powerful library that allows for

creating a variety of static, animated, and interactive visualizations. Here’s a

breakdown of why data visualization with matplotlib.pyplot is so important:

1. Simplifying Complex Data

 Purpose: Visualization helps make sense of complex data by breaking it down into
graphs and charts.

 Example with matplotlib.pyplot: Using a bar chart to compare sales figures
across multiple regions simplifies large datasets, making trends more apparent.

2. Uncovering Patterns and Trends

 Purpose: Visualizations reveal underlying trends, allowing businesses to identify
opportunities and areas for improvement.

 Example with matplotlib.pyplot: A line plot can highlight seasonal changes in
sales or demand, aiding in strategic planning.

3. Improving Decision Making

 Purpose: Data visualization aids decision-making by providing a clear picture of
potential outcomes.

Example with matplotlib.pyplot: A pie chart can display the market share of

different products, allowing for better resource allocation. 4. Communicating

Insights Effectively

 Purpose: Visualizations make data accessible to non-technical audiences.
 Example with matplotlib.pyplot: A scatter plot can be used to demonstrate

the relationship between two variables, such as advertising spend vs. revenue.

4. Communicating Insights Effectively

 Purpose: Visualizations make data accessible to non-technical audiences.

3+7 CO4 L2

 Example with matplotlib.pyplot: A scatter plot can be used to demonstrate
the relationship between two variables, such as advertising spend vs. revenue.

Anatomy of a figure:

In data visualization using libraries like Matplotlib, the concept of a Figure is

fundamental. A Figure represents the entire window or canvas where you create

visualizations, and it can contain one or more Axes, which are the areas where the

actual data is plotted. Understanding the anatomy of a Figure helps in creating

effective visualizations. Here’s a breakdown of the key components:

1. Figure

 Definition: The Figure is the top-level container for all elements of the plot.

It can be thought of as the entire plotting area or canvas.

 Attributes: It can have properties such as size, background color, and DPI

(dots per inch) which affects the resolution.

 Creation: You can create a Figure using plt.figure() or by creating a plot

directly (e.g., plt.plot()), which implicitly creates a Figure.

2. Axes

 Definition: An Axes is the area on which data is plotted. A Figure can

contain multiple Axes, allowing for multiple subplots in one Figure.

 Characteristics: Each Axes has its own set of X and Y axes, which can have

different scales, limits, and labels.

 Creation: You can create Axes using fig.add_axes() or plt.subplot(),

and they are where the actual plotting commands are applied.

3. Labels

 X-axis and Y-axis Labels: Labels for the X and Y axes provide context to

the data being visualized.

 Title: A title for the Figure gives a summary or context of what the plot

represents.

4. Ticks and Tick Labels

 Ticks: These are the markers on the axes that represent specific values.

 Tick Labels: The numbers or labels associated with each tick, indicating the

scale or categories represented.

5. Legend

 Definition: A legend explains the elements of the plot, indicating what

different colors, shapes, or line styles represent.

 Creation: It can be added using ax.legend() and is particularly useful

when multiple datasets are plotted together.

2 a) No.of overs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

run_scored = [5, 12, 20, 26, 30, 42, 55, 60, 75, 90]

Which plot is suitable for finding the relationship between the above given set of values.

Write a python code to illustrate the same.

b) Describe following functions:

np.arange(), np.linspace(), plt.plot(), plt.gca(), plt.barh()

Answer: a) ,b) – 5 marks eaach

a) To find the relationship between the number of overs and the runs scored, a scatter

plot is suitable. A scatter plot helps visualize the relationship between two continuous

variables, making it easy to identify trends or correlations.

 import matplotlib.pyplot as plt

Data

no_of_overs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

runs_scored = [5, 12, 20, 26, 30, 42, 55, 60, 75, 90]

Create scatter plot

plt.figure(figsize=(10, 6))

plt.scatter(no_of_overs, runs_scored, color='blue', marker='o')

Add labels and title

plt.title('Relationship between Overs and Runs Scored')

plt.xlabel('Number of Overs')

plt.ylabel('Runs Scored')

Optionally, add a trend line

Fit a polynomial of degree 1 (linear) to the data

coefficients = np.polyfit(no_of_overs, runs_scored, 1)

polynomial = np.poly1d(coefficients)

plt.plot(no_of_overs, polynomial(no_of_overs), color='red', linestyle='--', label='Trend

Line')

Add legend

plt.legend()

Show plot

plt.grid()

plt.show()

b) 1. np.arange()

Description: np.arange() is a NumPy function used to create an array of evenly

spaced values within a specified range. It’s similar to Python’s built-in range()

function but returns a NumPy array instead.

Syntax:

python

Copy code

numpy.arange([start,]stop[, step])

 Parameters:

5+5 CO5 L3

o start: (optional) The starting value of the sequence (default is 0).
o stop: The end value of the sequence (exclusive).
o step: (optional) The spacing between values (default is 1).

Example:

python

Copy code

import numpy as np

Create an array from 0 to 9

arr = np.arange(10)

print(arr) # Output: [0 1 2 3 4 5 6 7 8 9]

Create an array from 1 to 10 with a step of 2

arr_step = np.arange(1, 10, 2)

print(arr_step) # Output: [1 3 5 7 9]

2. np.linspace()

Description: np.linspace() is a NumPy function that creates an array of evenly

spaced numbers over a specified range. Unlike np.arange(), which specifies the

step size, np.linspace() specifies the number of samples.

Syntax:

python

Copy code

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False)

 Parameters:
o start: The starting value of the sequence.
o stop: The end value of the sequence (inclusive by default).
o num: (optional) The number of samples to generate (default is 50).
o endpoint: (optional) If True, stop is the last sample (default is True).
o retstep: (optional) If True, return the samples and the step size.

Example:

python

Copy code

import numpy as np

Create an array of 5 evenly spaced values between 0 and 1

linspace_arr = np.linspace(0, 1, num=5)

print(linspace_arr) # Output: [0. 0.25 0.5 0.75 1.]

3. plt.plot()

Description: plt.plot() is a Matplotlib function used to create a 2D line plot. It

can take various parameters to customize the appearance of the plot, such as color,

marker, and line style.

Syntax:

python

Copy code

matplotlib.pyplot.plot(x, y, fmt, *args, **kwargs)

 Parameters:

o x: The data for the x-axis.
o y: The data for the y-axis.
o fmt: (optional) A format string that specifies the color and line style.
o *args: Additional arguments for customization.
o **kwargs: Keyword arguments for further customization.

Example:

python

Copy code

import matplotlib.pyplot as plt

import numpy as np

Data

x = np.linspace(0, 10, 100)

y = np.sin(x)

Create a line plot

plt.plot(x, y, color='blue', linestyle='--', marker='o')

Add labels and title

plt.xlabel('X Axis')

plt.ylabel('Y Axis')

plt.title('Sine Wave')

Show plot

plt.show()

4. plt.gca()

Description: plt.gca() (Get Current Axes) is a Matplotlib function that returns the

current axes instance on the current figure. It allows you to modify properties of the

axes without explicitly storing them in a variable.

Syntax:

python

Copy code

matplotlib.pyplot.gca()

Example:

python

Copy code

import matplotlib.pyplot as plt

Create a simple plot

plt.plot([1, 2, 3], [4, 5, 6])

Get current axes

ax = plt.gca()

Modify properties

ax.set_title('Current Axes Title')

ax.set_xlabel('X Axis')

ax.set_ylabel('Y Axis')

Show plot

plt.show()

5. plt.barh()

Description: plt.barh() is a Matplotlib function used to create horizontal bar

charts. It is similar to plt.bar() but draws bars horizontally.

Syntax:

python

Copy code

matplotlib.pyplot.barh(y, width, height=0.8, left=None,

align='center', **kwargs)

 Parameters:
o y: The y-coordinates of the bars (the categories).
o width: The width of the bars (the values).
o height: (optional) The height of the bars (default is 0.8).
o left: (optional) The x-coordinates of the left sides of the bars (default is

0).
o align: (optional) Alignment of the bars (default is 'center').
o **kwargs: Additional keyword arguments for customization (color, edge

color, etc.).

Example:

python

Copy code

import matplotlib.pyplot as plt

Data

categories = ['A', 'B', 'C', 'D']

values = [3, 7, 5, 4]

Create a horizontal bar chart

plt.barh(categories, values, color='green')

Add title and labels

plt.title('Horizontal Bar Chart Example')

plt.xlabel('Values')

plt.ylabel('Categories')

Show plot

plt.show()

3 What are the different text and legend functions available in Matplotlib? Explain the usage of

labels, titles, text annotations, and legends with suitable code snippets.

Answer: 5+5 marks

Matplotlib provides several functions to add text elements and legends to your

plots. These features are crucial for making plots informative and easier to

understand. Here's an overview of the different text and legend functions, along with

their usage through code snippets.

1. Labels

Labels are used to describe the axes of the plot.

 Usage:

5+5 CO4 L2

o set_xlabel(): Sets the label for the x-axis.
o set_ylabel(): Sets the label for the y-axis.

2. Title

The title provides a brief description of what the plot is about.

 Usage:
o title(): Sets the title of the plot.

3. Text Annotations

Annotations can add additional information at specific points on the plot, helping to

clarify or highlight important data points.

 Usage:
o text(): Adds text at a specified location in data coordinates.
o annotate(): Adds an annotation with an arrow pointing to a specific

point.

4. Legends

Legends are used to describe different data series in a plot, especially when multiple

datasets are plotted together.

 Usage:
o legend(): Adds a legend to the plot.

Sample data

y1 = np.sin(x)

y2 = np.cos(x)

Create a plot

plt.plot(x, y1, label='Sine Wave') # Label for sine wave

plt.plot(x, y2, label='Cosine Wave') # Label for cosine wave

Set labels and title

plt.xlabel('X Axis')

plt.ylabel('Y Axis')

plt.title('Sine and Cosine Waves')

Add legend

plt.legend()

Show plot

plt.show()

4 Discuss the different types of basic plots available in Matplotlib such as bar charts, pie

charts, histograms boxplot and scatter plots. Provide examples demonstrating how to create

and customize these plots.

Answer:

Matplotlib is a powerful visualization library in Python that supports a variety of

basic plots, each suited for different types of data and analyses. Here’s a discussion

of some common plot types—bar charts, pie charts, histograms, box plots, and

scatter plots—along with examples demonstrating how to create and customize

them.

1. Bar Charts

Description: Bar charts are used to represent categorical data with rectangular bars.

The height of each bar corresponds to the value it represents.

Example:

python

Copy code

import matplotlib.pyplot as plt

Data

categories = ['A', 'B', 'C', 'D']

values = [10, 15, 7, 20]

Create a bar chart

plt.bar(categories, values, color='skyblue')

Add title and labels

plt.title('Bar Chart Example')

plt.xlabel('Categories')

plt.ylabel('Values')

Show plot

plt.show()

2. Pie Charts

Description: Pie charts display the proportions of categories as slices of a circle.

They are useful for showing relative sizes of parts to a whole.

Example:

python

Copy code

Data

sizes = [30, 25, 20, 25]

labels = ['Category A', 'Category B', 'Category C', 'Category D']

colors = ['gold', 'lightcoral', 'lightskyblue', 'lightgreen']

Create a pie chart

10 CO5 L2

plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%',

startangle=140)

Add title

plt.title('Pie Chart Example')

Show plot

plt.axis('equal') # Equal aspect ratio ensures that pie chart is

circular

plt.show()

3. Histograms

Description: Histograms are used to represent the distribution of a dataset. They

display the frequency of data points within specified ranges (bins).

Example:

python

Copy code

import numpy as np

Generate random data

data = np.random.randn(1000)

Create a histogram

plt.hist(data, bins=30, color='purple', alpha=0.7)

Add title and labels

plt.title('Histogram Example')

plt.xlabel('Value')

plt.ylabel('Frequency')

Show plot

plt.show()

4. Box Plots

Description: Box plots provide a summary of a dataset using five statistics:

minimum, first quartile, median, third quartile, and maximum. They are useful for

identifying outliers and comparing distributions.

Example:

python

Copy code

Generate random data

data = [np.random.normal(0, std, 100) for std in range(1, 4)]

Create a box plot

plt.boxplot(data, vert=True, patch_artist=True, labels=['Group 1',

'Group 2', 'Group 3'])

Add title and labels

plt.title('Box Plot Example')

plt.ylabel('Value')

Show plot

plt.show()

5. Scatter Plots

Description: Scatter plots are used to observe relationships between two numerical

variables. Each point represents an observation.

Example:

python

Copy code

Data

x = np.random.rand(50)

y = np.random.rand(50)

Create a scatter plot

plt.scatter(x, y, color='red', alpha=0.5)

Add title and labels

plt.title('Scatter Plot Example')

plt.xlabel('X Values')

plt.ylabel('Y Values')

Show plot

plt.show()

Customization Options

Matplotlib provides various customization options for these plots, including:

 Colors: Use the color parameter to change the color of the plot elements.
 Transparency: The alpha parameter controls transparency, with 0 being fully

transparent and 1 being fully opaque.
 Labels: Use xlabel(), ylabel(), and title() to add descriptive labels and

titles.
 Grid: Enable grids using plt.grid(True) for better readability.

5 Explain the concept of subplots and layout management in Matplotlib. How do tight layout,

GridSpec, and radar charts enhance the presentation of multiple plots? Include examples to

support your explanation.

Answer:

In Matplotlib, subplots and layout management allow you to create complex figures

containing multiple plots. This is especially useful for comparing data across

different categories or visualizing different aspects of a dataset. Here’s a detailed

explanation of subplots, layout management techniques (including tight layout,

GridSpec), and the concept of radar charts, along with examples.

1. Subplots

Subplots are individual plots that share the same figure space. They can be arranged

in a grid and allow for the visualization of multiple datasets or different perspectives

on the same dataset within a single figure.

Creating Subplots:

5+5 CO4 L2

 You can create subplots using the plt.subplot() function or the
plt.subplots() function.

Example:

python

Copy code

import matplotlib.pyplot as plt

import numpy as np

Sample data

x = np.linspace(0, 10, 100)

y1 = np.sin(x)

y2 = np.cos(x)

Create subplots

fig, axs = plt.subplots(2, 1) # 2 rows, 1 column

Plotting in the first subplot

axs[0].plot(x, y1, color='blue')

axs[0].set_title('Sine Function')

axs[0].set_ylabel('sin(x)')

Plotting in the second subplot

axs[1].plot(x, y2, color='orange')

axs[1].set_title('Cosine Function')

axs[1].set_ylabel('cos(x)')

axs[1].set_xlabel('X Axis')

Show plot

plt.tight_layout() # Adjust layout to prevent overlap

plt.show()

2. Layout Management

Matplotlib provides several layout management techniques to optimize the

presentation of multiple plots:

a. Tight Layout

The tight_layout() function automatically adjusts subplot parameters to give

specified padding and prevent overlapping content.

Example:

python

Copy code

Same data as before

fig, axs = plt.subplots(2, 1)

Plotting

axs[0].plot(x, y1)

axs[1].plot(x, y2)

Using tight_layout to avoid overlap

plt.tight_layout()

plt.show()

b. GridSpec

GridSpec provides more flexible subplot arrangements by allowing for different

row and column spans for subplots. It gives more control over the layout compared

to the basic subplot() method.

Example:

python

Copy code

from matplotlib.gridspec import GridSpec

Create a GridSpec object

gs = GridSpec(3, 2) # 3 rows, 2 columns

Create subplots

fig = plt.figure(figsize=(10, 6))

Adding subplots with GridSpec

ax1 = fig.add_subplot(gs[0, :]) # First row spans all columns

ax2 = fig.add_subplot(gs[1, 0]) # Second row, first column

ax3 = fig.add_subplot(gs[1, 1]) # Second row, second column

ax4 = fig.add_subplot(gs[2, :]) # Third row spans all columns

Plotting

ax1.plot(x, y1)

ax2.plot(x, y2)

ax3.plot(x, -y1)

ax4.plot(x, -y2)

Titles and layout

ax1.set_title('Sine Function')

ax2.set_title('Cosine Function')

ax3.set_title('Negative Sine Function')

ax4.set_title('Negative Cosine Function')

plt.tight_layout()

plt.show()

3. Radar Charts

Radar charts (or spider charts) allow you to visualize multivariate data in a two-

dimensional chart of three or more quantitative variables represented on axes

starting from the same point. They are useful for comparing multiple variables for

different groups.

Example:

python

Copy code

Radar chart example

import numpy as np

import matplotlib.pyplot as plt

Define data

labels = np.array(['A', 'B', 'C', 'D'])

values = np.array([4, 3, 2, 5])

values = np.concatenate((values,[values[0]])) # Repeat the first

value to close the loop

Create radar chart

angles = np.linspace(0, 2 * np.pi, len(labels),

endpoint=False).tolist()

values = np.concatenate((values,[values[0]])) # Repeat the first

value to close the loop

angles += angles[:1] # Close the loop for angles

fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))

ax.fill(angles, values, color='orange', alpha=0.25)

ax.plot(angles, values, color='orange', linewidth=2)

Add labels

ax.set_yticklabels([])

ax.set_xticks(angles[:-1])

ax.set_xticklabels(labels)

ax.set_title('Radar Chart Example')

Show plot

plt.show()

6 Describe the basic image operations that can be performed using Matplotlib. How can

mathematical expressions be written and displayed in plots? Provide examples of image

manipulation and incorporating mathematical expressions in plots.

Answer:

 Matplotlib provides a variety of functions for basic image operations and allows for

the incorporation of mathematical expressions into plots. Here’s an overview of the

basic image operations you can perform with Matplotlib, along with examples of

image manipulation and displaying mathematical expressions.

Basic Image Operations with Matplotlib

1. Displaying Images: You can display images using plt.imshow(), which

takes an array representing image data.

2. Adjusting Image Properties: You can modify image properties such as

color maps, interpolation, and aspect ratio.

3. Manipulating Image Data: This includes basic transformations like

rotating, flipping, and resizing.

4. Overlaying Annotations: You can overlay text, lines, and other shapes on

images for labeling or highlighting features.

Example of Basic Image Operations

Displaying and Modifying an Image:

python

Copy code

import matplotlib.pyplot as plt

import numpy as np

from matplotlib import image as mpimg

Load an image

img = mpimg.imread('example_image.png') # Load your image file

Display the original image

plt.subplot(1, 2, 1)

plt.imshow(img)

plt.title('Original Image')

plt.axis('off') # Hide axes

Display a modified image (grayscale)

3+3+4 CO5 L2

gray_img = np.mean(img, axis=2) # Convert to grayscale by

averaging color channels

plt.subplot(1, 2, 2)

plt.imshow(gray_img, cmap='gray')

plt.title('Grayscale Image')

plt.axis('off') # Hide axes

Show both images

plt.tight_layout()

plt.show()

In this example:

 We load an image using mpimg.imread().
 We display the original and a grayscale version of the image side by side using

plt.imshow().

Mathematical Expressions in Plots

Matplotlib supports LaTeX-like syntax for rendering mathematical expressions in

plots. You can use dollar signs ($) to enclose the mathematical expressions you want

to display.

Example of Incorporating Mathematical Expressions

Displaying Mathematical Expressions:

python

Copy code

import matplotlib.pyplot as plt

import numpy as np

Data for plotting

x = np.linspace(0, 2 * np.pi, 100)

y1 = np.sin(x)

y2 = np.cos(x)

Create the plot

plt.plot(x, y1, label=r'$\sin(x)$', color='blue')

plt.plot(x, y2, label=r'$\cos(x)$', color='red')

Adding titles and labels

plt.title('Trigonometric Functions')

plt.xlabel(r'x (radians)')

plt.ylabel(r'$f(x)$')

plt.legend()

Show the plot

plt.grid()

plt.show()

In this example:

 We plot the sine and cosine functions.
 Mathematical expressions for the sine and cosine functions are incorporated using

r'$\sin(x)$' and r'$\cos(x)$'.
 The r before the string indicates that it is a raw string, which is useful for LaTeX

formatting.

4 Discuss the different types of basic plots available in Matplotlib such as bar charts, pie

charts, histograms boxplot and scatter plots. Provide examples demonstrating how to create

and customize these plots.

10 CO5 L2

5 Explain the concept of subplots and layout management in Matplotlib. How do tight layout,

GridSpec, and radar charts enhance the presentation of multiple plots? Include examples to

support your explanation.

5+5 CO4 L2

6 Describe the basic image operations that can be performed using Matplotlib. How can

mathematical expressions be written and displayed in plots? Provide examples of image

manipulation and incorporating mathematical expressions in plots.

3+3+4 CO5 L2

CI CCI HoD

