g blank papges
2. 4248 = 50, will be treated as malpractice.

pulsonily draw diagonal cross lines o fhie Temamin

ppeal 10 evaluator and /0r Cqualong written e

M, o

Any revealing of identification, a

I On completing vour ansiwve

.
-

Imporant Note

o

r —
. - 211563
Sixth Semester wree Examination, June/July 2024
' are Testing
Time: 3 hrs. Max. Marks: 100
Note: Answer any FIVE full g i choosing ONE full question from each module.
. _ odule-1 !
I, a What is Software Testing? Dj iate between functional festing and structural testing
with an example. (10 Marks)
b. Demonstrate the triangle * ) statement along with a flowchart for traditional
implementation. n (10 Marks)
'
: ~ OR
2 a Withaneat diagramy explain the SATM (10 Muarks)
b. Classify the types of faults and explain cach with an example. (10 Marks)
: Module-2
3 a Examine boundary value analysis with the test cases using a triangle problem. (10 Marks)
b. Examine the equivalence class testing. Examine the equivalence class test cases for the
nextnate function (10 Marks)
OR
4 a What are the limiat of botndigy value_apalysis and examine the test cases using
2 boundary value analysistesting for cafamisSion problem. ¢ (10 Marks)
b. Explain the format of the decision tablel Build a decision %ﬁ:ﬂ simple version of the
triangle problem. ‘«. - (10 Marks)
dul ’
- o - -
5 a Define a program graph. Draw a proggim graph of mmission problem. (10 Marks)
b Define DD-path. Explain basis path 1eSting with d suitable example. (10 Marks)
%1 !
. B
6 a Define predicate node, du-paths, defgatfiGive du-path for lock, stock and sales for
commission problem (10 Marks)
b.. Explain slice-bas¢d testing with an ex; (10 Marks)
7 a. Examine the traditional view of tesin ,alternate life cycle model. (10 Marks)
b. Compare top-down and bottom-up iny strategies. (10 Marks)
8 a Formulate call graph based intcgrgfon with the help of : 1) Pairwise Integration
11) Neighborhood integration. (10 Marks)
b. Define the SAJM system. Demons;aqg lationship model of the SATM system.

(10 Marks)







USN

e

<

VTU Examination — JUN/JULY 2024
Scheme of Evaluation

Sub:

SOFTWARE TESTING Sub Code: | 211S63

Branch:

ISE

Date:

20/08/2024 | Duration: | 3 hrs | Max Marks: | 100 Sem/Sec:

VI/A,B&C

OBE

Answer any FIVE FULL Questions

‘ MARKS

coO |RBT

MODULE -1

a. What is Software Testing? Differentiate between functional testing and
structural testing with an example.

Scheme: Definition + Differences + Diagram highlighting as an example —
2+5+3 marks

Solution: Software testing is an investigation conducted to provide stakeholders
with information about the quality of the product or service under test. Software
testing can also provide an objective, independent view of the software to allow the
business to appreciate and understand the risks of software implementation.
Differentiate :

Functional Testing Structural Testing

It is also known as white-box or clear-
box testing as thorough knowledge
and access of the code is required.

It is also known as black-box
testing as no knowledge of the
internal code is required.

It ensures that the system is error-
free.

Finds errors in the internal code logic
and data structure usage.

It does not ensure that the user
requirements are met.

It is a quality assurance testing
process ensuring the business
requirements are met.

Functional testing checks that the
output is given as per expected.

Performed the entire software in
accordance with the system
requirements.

Before writing a functional test
case, a tester is required to
understand the application’s
requirements.

Writing a structural test case requires
understanding the coding aspects of
the application.

It examines how well a system
satisfies the business needs or the
SRS.

It examines how well modules
communicate with one another.

Specification

&)

Program Specification

&)

Program

Specification

&

Program Specification

B

Program

10




b. Demonstrate the triangle problem statement along with a flowchart for
traditional implementation.
Scheme : Problem Statement + Code + Flowchart — 2+4+4 marks
Solution:
The Triangle Program accepts three integers as input.
The output of the program is the type of triangle determined by the three sides:
Equilateral, Isosceles, Scalene, or Not A Triangle.
The integers a, b, and ¢ must satisfy the following conditions:
cl. 1€a<200 cd.a<h+c

c2.1<b<200 cS.beca+c

c3. 1<c<200 ch.c<a+h

Dim a, b, c, match As INTEGER

Oulpul(‘l_nlcf 3 intcgers which arc sidces of a triangle™)
Input(a.b.c)

Ourput"Sidc A is “.a)

Ourpult("Side B is ~.b)

Output("Side C is <)

match = O

ifa=0b 1)
2 satch = match <« 1 «=>
Endlr
If a = < 3>
Then match = match <« 2 3>
Endir
iIfb=c <S>
Then match = match «+ 3 s>
Endlr
If match = O «7>
Then If(asbl=c =)
Then Output(” NotA Trianglc™) C12.1>
Elsc If(besc)<=un o>
Output(” NotA Triangle™) C12.2)
Elsc If (asc)<=b C10)>»
Then Ourtpui(™ l\mATriungle > 123>
= COuiput (CScalecne™ C11)
Endlr
Endir
Endir
Elsc If match=1 «13)
Then If (a+c)<m=b «ra)y
Then Output(™ NotA Triangle™) (124>
Elsc Owiput (CIsosccecles™) «15.1)>
Endlr
Elsc If match=22 i)
Thewen If(asc)=b
Then Output(™ NotA Triangle™) «C12.S5)
Elsc Output (TIsosccles™) CIsS.2)
Endir
Else If match=3 CI18)
Then If (bs+cH)<=a 19>
“Then Output(" NotATriangle™ ) (12.6)
Elsc Output ("lsosceles™) (15.3)
EndIlf
Else Owuput ("Equilateral™) (20)
Eodir

Endil
Endir

FLOWCHART FOR a2
TRIANGLE PROBLEM v ————r—

A o= matchs 1 2
~N
match =
3 a=c? matchs d
~N
5 match =
s b2 match+3 )
~N
7 o
N match ¥
13 =07 = 8
N match Y Y +b =< c
1a =1 14 0
match . +b < c Y
2 .24 °
v ~N
N ec<b Y bsc ==
A o =
match ¥ 19 10
=3 Y +sc = D
N =
Y N
N
Not a
Equilatera tsosceles Trangie Scalene

20 1s 12 11

10




(OR)

a. With a neat diagram, explain the SATM.
Scheme : Definition +Interface +Screens with Explanation — 2+3+5 Marks

Solution:

Scheme : Definition + Explanation — 2+2+2+2+2 marks

Solution: 10
THE SIMPLE AUTOMATIC TELLER MACHINE
(SATM)

THE SATM TERMINAL
(/ WELCOME \ Receipts ] o)
to the ID Card ]
Si 1
Autom;nuuc) %eller @ @ @
Machine : :
Please Insert your @
card for service @ o
N i & @O GO
@) CANCEL
I Cash Dispensing Door I
| Deposit Envelope Door l
\— _/
SATM PROBLEM STATEMENT CONT...

* Using a terminal with features, SATM
customers can select any of the transaction
tvpes: deposits, withdrawals, and balance
inquiries

» These transactions can be done on two types of
accounts: checking and savings

*» The SATM system communicates with bank
customers via 15 screens (shown in figure)

p]ea::eill'xc.:e::i'aur Please enter your FID Your PIN is incorrect. |
ATM card Please bry again.
g Screamn 4 i s Screen 5 it Screen 6
Select transaction: -
Invalid ATR card. It will de;::ii z ( :_::ngii: ]
L be retained. vy L withdrawal =~
Screen 7 S Screen a e Bcreen o
Enter armownt. Insufficient Furds!
“Withdrawals must Flease enter a new Alachine can only
be multiplesofs1o /2 L amoun 3 dispensa £10 notes
e Screen 10 Ty e Screan 11 Ty e Screen 12 Ty
Temporarily unable to Your balance is baing Temporar ily unable ta
| Beber transmeriant ) o frmn diaponase | _sother searisctinn? )
Soreen 12 Ty . Ecreen 14 it o Screen 15
Wl B R e M Gt
b. Classify the types of faults and explain each with an example. 10

L2




Type Instances

O Logic Faults

Missing case(s)

Input | Correctinput not accepted

Incorrect input accepted

Duplicate case(s)

Description wrong or missing

— Extreme condition neglected
Farameters wmng or rTIISSII"tg

Output | Wrong format Misinterpretation

Wrong result Missing condition

Carrect result at wrong time (too early, too late) Extraneous condition(s)

Incomplete or missing result Test of wrong variable

Spurious result

Incorrect loop iteration

Spellingfgrammar

Wrong operator {g.g., < instead of £)
Cosmetic

Q Computation Faults

Incorrect algorithm

O Data Faulls

Missing computation

Incorrect initialization

Incorrect operand

Incarrect storagefaccess

Incorrect operation

Wrong flagfindex value

FParenthesis error

Incorrect packingfunpacking

Insufficient precision (round-off, truncation)

Wrong variable used

Wrong built-in function

Wrong data reference

Scaling or units error

O Interface Faults

Incorrect interrupt handling

Incorrect data dimension

Incarrect subscript

17O timing

Incarrect type

Call to wrong procedure

- - Incarrect data scope
Call to nonexistent procedure

N Sensor data out of limits
Parameter mismatch (type, number)

Off by one
Incompatible types

Inconsistent data

Superfluous inclusion

MODULE -2

a. Examine boundary value analysis with the test cases using a triangle
problem.

Scheme : Definition + Explanation + Test cases — 2+3+5 marks

Solution:

The basic idea in boundary value analysis is to select input variable values at their:
Minimum, Just above the minimum, A nominal value, Just below the maximum and

Maximum
y2
d

10

L2




Case # a b < Expected
Output
1 100 100 1 Isosceles
2 100 100 2 Isosceles
3 100 100 100 Equilateral
4 100 100 199 Isosceles
s 100 100 200 ™ot a Trianle
6 100 1 100 Isosceles
7 100 2 100 Isosceles
8 100 100 100 Equilateral
o 100 199 100 Isosceles
10 100 200 100 ™ot a Triangle
11 1 100 100 Isosceles
1z 2 100 100 Isosceles
13 100 100 100 Equilateral
14 199 100 100 Isosceles
15 200 100 100 ™ot a Triangle

b. Examine the equivalence class testing. Examine the equivalence class test
cases for the nextdate function.

Scheme : Definition + Explanation + Test cases — 2+3+5 marks

Solution:

* The idea of equivalence class testing is to identify test cases by
using one element from each equivalence class

* If the equivalence classes are chosen wisely, the potential
redundancy among test cases can be reduced

* [ = Closed Interval = Includes end-points
* ) => Open Interval = Does not include end-points

TYPES OF EQUIVALENCE CLASS TESTING

1) Weak Normal Equivalence Class Testing

2) Strong Normal Equivalence Class Testing

3) Weak Robust Equivalence Class Testing

4) Strong Robust Equivalence Class Testing

EQUIVALENCE CLASS TEST CASES FOR THE
NEXTDATE FUNCTION

= Intervals of valid values defined as follows:
Ml= {month : 1 <= month <=12}
D1 = {day : 1<=day <= 31}
Y1 = {year : 1812 <= year <= 2012}

m |Invalid Equivalence Classes
M2 = { month : month <1}

M3 = { month : month = 12}

D2 ={day:day <1}

D3 = {day: day > 31}

Y2 = { year: year < 1812}

Y3 = { year: year > 2012 }

WWEAK NORMAL EQUIVATLENCE CILASS

Case 1D

ANMonith

Day Year Expected Output

WVWINT, SN

(=3

15 1912 6/16/1912

Here is the full set of weak robuse tese cases:

Case 1D Month Day Year Expected Output

WRT 6 15 1912 | 6/16/1912

WR2 -1 15 1912 Value of month not in the range 1.. 12
WR3 13 15 1912 Value of month notin the range 1..12
WR4 6 ~1 1912 Value of day not in the range T ... 31

WRS 6 32 1912 | Value of day not in the range T... 31

WR6 6 15 1811 Value of year not in the range 1812 ... 2012
WR7 6 15 2013 Value of year not in the range 1812 ... 2012

10

L2




Case 1D hdarnth Day Year Expected Quiput
5R1 -1 15 1912 value of month not in the range 1 ... 12
SR2 -1 1912 Value of day not in the range 1 ... 31
5R3 15 1811 Value of year not in the range 1812 ... 2012
SR4 -1 -1 1912 value of month not in the range 1 ... 12
Value of day not in the range 1 ... 31
SRS 2] -1 1811 Value of day not in the range 1 ... 31
value of yvear not in the range 1812 ... 2012
SR6 -1 15 1811 value of month not in the range 1 ... 12
Value of year not in the range 1812 ... 2012
SR7 L -1 1811 Value of month not in the range 1 ... 12
value of day not in the range 1 ... 31
Value of year not in the range 1812 ... 2012

(OR)

a. What are the limitations of boundary value analysis and examine the test
cases using boundary value analysis testing for commission problem.

Scheme : Limitations + Explanation + Test cases — 2+3+5 marks

Solution:

Boundary value analysis works well when the
pProgram to be tested is a function of several
independent variables that represent bounded
pPhyvsical guantities.

Boundary value analysis selected test data with no
consideration of the function of the program, nor
of the semantic meaning of the variables.

We can distinguish between phvysical and logical
type of variables as well (e.g. temperature,
pressure speed, or PIN numbers, telephone
Nnumbers etc.)

Rifle salespersons in the Arizona Territory sold rifle locks,
stocks, and barrels made by a gunsmith in Missouri
Lock = $45.00, stock = $30.00, barrel = $25.00

Each salesperson had to sell at least one complete rifle per
month ($100)

The most one salesperson could sell in a month was 70 locks,
80 stocks, and 90 barrels

Each salesperson sent a telegram to the Missouri company
with the total order for each town (s)he visits

1 = towns visited = 10, per month

Commission: 10%6 on sales up to $1000, 15% on the next
$800, and 2026 on any sales in excess of $1800

Case # Locks Stocks Barrels Sales Comm. Comments

1 1 1 1 100 10 min

2 10 10 9 975 97.5 border-
3 10 9 10 970 97 border-
4 9 10 10 955 95.5 border-
5 10 10 10 1000 100 border
6 10 10 11 1025 103.75 border+
7 10 11 10 1030 104.5 border+
8 11 10 10 1045 106.75 border+

10

L2




b. Explain the format of the decision table. Build a decision table for a simple
version of the triangle problem.

Scheme: Definition + Explanation + Test cases+ Decision Table — 2+3+3+2
marks

Solution:

Decision Table Techniques

e To identify test cases with decision tables, we interpret conditions as inputs and actions as
outputs. Sometimes conditions end up referring to equivalence classes of inputs, and
actions refer to major functional processing portions of the item tested.

e The rules are then interpreted as test cases.

e Decision table have some assurance that we will have a comprehensive set of test cases.
Several techniques that produce decision tables are more useful to testers.

e One helpful style is to add an action to show when a rule is logically impossible.

e In the decision table in Table 7.2, we see examples of don’t care entries and impossible
rule usage. If the integers a, b, and ¢ do not constitute a triangle, we do not even care
about possible equalities, as indicated in the first rule.

e Inrules 3, 4, and 6, if two pairs of integers are equal, by transitivity, the third pair must be
equal; thus, the negative entry makes these rules impossible.

10 L2
Table 7.2 Decision Table for Triangle Problem

cl:a, b, c form a triangle? F T T T T T T T
c2:a=h? — T T T T F F F
c3:a=c? — T T F F T T F F
cd: b =c? — T F T F T F T F
al: Not a triangle X
a2: Scalene X
a3: Isosceles X X X
a4: Equilateral X
a5: Impossible X X X

Case ID a b C Expected Output

DT1 4 1 2 Not a triangle

DT2 1 4 2 Not a triangle

D13 1 2 4 Not a triangle

DT4 5 5 5 Equilateral

DTs ? ? ? Impossible

DT6 ? ? ? Impossible

D17 2 2 3 Isosceles

DT8 ? ? ? Impossible

D19 2 3 2 Isosceles

DT10 3 2 2 Isosceles

DT11 3 4 5 Scalene

MODULE -3
a. Define a program graph. Draw a program graph of the commission

problem.
Scheme: Definition + Code + Program graph + Test Cases — 2+4+4 marks
Solution:




The program graph G(P) is constructed with statement fragments as nodes and

edges that represent node sequences.

* Definition:

Node n € G(P) is a defining node of the variable v € V, written as DEF(v, n), if and only
if the value of variable v is defined as the statement fragment corresponding to node n.

» Input statements, assignment statements, loop control statements, and procedure calls are
all examples of statements that are defining nodes. When the code corresponding to such
statements executes, the contents of the memory location(s) associated with the variables
are changed.

¢ Definition:

Node n € G(P) is a usage node of the variable v € V, written as USE(v, n), if and only
if the value of the variable v is used as the statement fragment corresponding to node n.

» Output statements, assignment statements, conditional statements, loop control
statements, and procedure calls are all examples of statements that are usage nodes. When
the code corresponding to such statements executes, the contents of the memory
location(s) associated with the variables remain unchanged.

Program Commission (INPUT,OUTPUT)
Dim locks, stocks, barrels As Integer

Dim lockPrice, stockPrice, barrelPrice As Real
Dim totalLocks, totalStocks, totalBarrels As Integer
Dim lockSales, stockSales, barrelSales As Real
IDim sales, commission As Real

lockPrice = 45.0

stockPrice = 30.0

9 barrelPrice = 25.0

10 totalBarrels = 0

11 totalStocks = 0

12 totalBarrels = 0

13 Input(locks)

14 While NOT(locks = -1) “locks = -1 signals end of data
15 Input(stocks, barrels)

16 totall.ocks = totalLocks + locks

17 totalStocks = totalStocks + stocks

18 totalBarrels = totalBarrels + barrels

19 Input{locks)

20 EndWhile

21 Output(“Locks sold:,” totalLocks)

22 Output(“Stocks sold:," totalStocks)

23 Output(“Barrels sold.,” totalBarrels)

24 lockSales = lockPrice*totallLocks

25 stockSales = stockPrice*totalStocks

26 barrelsSales = barrelPrice * totalBarrels

27 sales = lockSales + stockSales + barrelSales

28 Output(“Total sales: ", sales)

29 If (sales > 1800.0)

30 Then

31  commission = 0.10 * 1000.0

32  commission = commission + 0.15 * 8000

33 commission = commission + 0.20*(sales—-1800.0)
34 Else If (sales > 1000.0)

35 'Then

36 commission = 0.10 * 1000.0

37 commission = commission + 0.15%(sales—1000.0)
38 Else

39 commission = 0.10 * sales

40 Endlf

41 EndIf

42 Output(*Commission is $”, commission)

43 End Commission

s B= R S B S R

o

" |

10

L3




b. Define DD-path. Explain basis path testing with a suitable example.

Scheme: Definition + Basis path with example + Test Cases — 2+6+2 marks

Solution:

The reason that program graphs play such an important role in structural testingis due to the fact
that they form the basis of a number of testing methods,including one based on a construct

known as decision-to-decision paths (morecommonly referred to as DD-Paths).

The idea is to use DD-Paths to create acondensation graph of a piece of software’s program graph,
in which a numberof constructs are collapsed into single nodes known as DD-Paths.

The delinitons oleach dilferent Lype of DI-Path thal a chain can be reduced 1o are given asfollows:

Type 1:
Type 2:
Type 3:
Type 4:

Twype 5: The chain is of a maximal length =

A single node with an in-degree = (.
A single node with an out-degree = 0,
A single node with in-degree =— 2 or out-degree
A single node with in-degree = 1 and out-degrec

1.

=

All programs must have an entrv and an exit and so every program graphmust have a source and

(L

[T -

9.

10
11
12

13

14.
15.
16.
17.
18.
19.
20.
21.

22
23

. Program Triangle
. Dim a, b,c As Integer
. Dim IsTriangle As Boolean

. Output ( “enter a,b, and c integers”)
. Input (a,b,c)

. Output (“side 1 is”, a)

. OQutput (“side 2 is”, b)

. Output ("side 3 is”, c)

If (a<b+c) AND (b<a+c) And (c<b+a)
. then IsTriangle = True

. else IsTriangle = False

. endif

. If IsTriangle
then if (a=b) AND (b=c)
then Output (“equilateral™)

then Output ( “Scalene”)
else Output (“Isosceles™)
endif
endif
else Output (“not a triangle™)
. endif
. end Triangle2

S
—
Lp |

else if (a!= b) AND (a != b) AND (b != c)

100

Expected
Results

Not A
triangle

100

100

100

Equilateral

100

50

60

Scalene

®®®
H
L

F 100

100

50

Isosceles

ez

10

L2

(OR)

a. Define predicate node, du-paths, dc-path. Give du-path for lock, stock and
sales for commission problem.

Scheme: Definition +DU path Table + Test Cases — 2+6+2 marks

Solution:

10

L3




A usage node USE(v.,n) 1s a predicate use (denoted
as P-use), iff the statement n 1s a predicate statement:

otherwise USE(v.n) 1s a computation use. (denoted
C-use)

Nodes corresponding to predicate uses always have an
outdegree = 2

Nodes corresponding to computation uses always have
outdegree < 1

A definition-clear (sub) path with respect to a
variable v (denoted dc-path) 1s a definition-use(sub)
path in PATHS(P) with initial and final nodes

DEF(v.m) & USE(v.n) such that no other node in the
(sub) path 1s a defining node of v

A definition-use (sub) path with respect to a variable
v (denoted du-path) 1s a (sub) path in PATHS(P)

such that for some v € V, there are define and usage
nodes DEF(v.m) & USE(v.n) such that m & n are the
nitial and final nodes of the (sub) path.

Table 10.2 Define/Use Nodes fo

A r Vari :
Commission Problem ariables in the
We DefinedatNode ~ (Jgeq at Node
lockPrice 7 2%
stockPrice 8 2%
barrelPrice 9 %
totalLocks 10,16 16,21,24
totalStocks: 11,17 17,22,25
totalBarrels 12,18 18,23,26
locks ' 13,19 . 14,16
stocks 15 11:
barrels 15 =
lockSales 2% i
stockSales 5 =
26
barrelSales o 28,20,33, 337,39
7 42
O DD-Path graph of the commis- sales 32,33,37,42

31,32, 33, 36, 37,39

—

sion program. commission




b. Explain slice-based testing with an example.
Scheme : Definition + explanation + example — 2+5+3 marks
Solution:

wrnnvn n n 0y

A program slice is a set of program statements that contribute
to, or affect a value for a variable at some point in the program

The idea of slicing is to divide a program into components that
have some useful meaning

DEFINITION

— Given a program P and a set V of variables in P, a slice on
the variable set V at statement n, written S(V, n) is the set
of all statements in P prior to node n that contribute to
the values of variables in V at node n

Five forms of usage nodes
— P-use (used in a predicate (decision))
— C-use (used in computation)
— O-use (used for output, e.g. printf())
— L-use (used for location, e.g. pointers, subscripts)
— I-use (iteration, e.g. internal counters)

Two forms of definition nodes
— I-def (defined by input, e.g. scanf())
— A-def (defined by assignment)

EXAMPLE — COMMISSION PROBLEM

SLICE ON LOCK VARIABLE

In the program fragment

13. Input(locks)
14. While NOT(locks = -1)

16, Input(stocks, barrels)

16. totallLocks = totallLocks + locks

17. totalStocks = totalStocks + stocks
18. totalBarrels = totalBarrels + barrels
19. Input{(locks)

20.EndWhile

T here are these slices on locks (notice that
statements 1S5, 17, and 18 do not appear):
S1: S(locks, 13) {133} DEFINING NODE I-DEF
S2: S(locks, 14) {13, 14, 19, 203
S3: S(locks, 16) {13, 14, 19, 203
S4a: S(locks, 19) {193} DEFINING NODE I-DEF

SLICE ON SALES AND COMMISSION

54: S(sales,27) = {7.8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27}
»s: S(sales,28) = {7.8.9,10,11,12,13,14,15,16,17,18,19,20,24,25.26,27}
»6: S(sales,29) = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27}
7 S(sales,33) = {7.8,9,10,11,12,13.14,15,16,17,18,19,20,24,25,26,27}
-g: S(sales.34) = {7,8.9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27}
»o: S(sales,37) = {7.8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27}
30 S(sales,38) = {7,8.9,10,11,12,13,14,15,16,17,18,19,20,24.25,26,27}

— S SV S;3USsUS, WS, LSy,

10

L2




MODULE -4

10 |4

L2

7. | a. Examine the traditional view of testing levels, alternate life cycle model.
Scheme : Definition + diagram with explanation for each — 2+8 marks

Solution:

Requirements
Specification

[ntegration
Testing

Regquirements
Specihcation

D.::.a_irc-d Preliminary
Drosign Design

I
i
]
1

- — - |
o Series of I

Biailds '

) |

Life cycle with a build scequence.

'S\ =LerTh
Leskimmg




b. Compare top-down and bottom-up integration strategies.
Scheme : Definition with explanation and example for each — 5+5 marks
Solution:

= Top-down integration strategy focuses on
testing the top layer or the controlling
subsystem first (i.e. the main, or the root of
the call tree)

= | he general process in top-down integration
strategy is to gradually add more subsystems
that are referenced/required by the already
tested subsystems when testing the
application

Top-Down Integration

Top Subiree
(Sessions 1-4)

Second Level Subiree
(Sessions 12-15)

Botom Level Subtree
(Sessions 38-42)

= Bottom-Up integration strategy focuses on
testing the units at the lowest levels first

= Gradually includes the subsystems that
reference/require the previously tested
subsystems

= [ his is done repeatedly until all subsystems
are included in the testing

= Special drivercode is needed to do the

testing
Bottom-Up Integration

Bottom Level Subtree
(Sessions 13-17)

Second Level Subtree
(Sessions 25-28)

Top Subtree
(Sessions 29-32)

10

L2




(OR)

a. Formulate call graph based integration with the help of i) Pairwise
Integration ii) Neighborhood integration.

Scheme : Definition with explanation and example for each — 5+5 marks
Solution:

= The basic idea is to use the call graph instead
of the decomposition tree

= The call graph is a directed, labeled graph

= Two types of call graph based integration
testing
= Pair-wise Integration Testing
= Neighborhood Integration Testing

= T he idea behind Pair-Wise integration testing
is to eliminate the need for developing
stubs/drivers

= The objective is to use actual code instead of
stubs/drivers

= In order not to deteriorate the process to a
big-bang strategy, we restrict a testing
session to just a pair of units in the call graph

Some Pair-wise Integration Sessions

PREEAGAH

= We define the neighbourhood of a node in a
graph to be the set of nodes that are one
edge away from the given node

= In a directed graph means all the immediate
predecessor nodes and all the immediate
successor nodes of a given node

= Neighborhood Integration Testing reduces
the number of test sessions




Two Neighborhood Integration Sessions

b. Define the SATM system. Demonstrate the entity/relationship model of the
SATM system.

Scheme : Definition with explanation and example for each — 5+5 marks
Solution:

<.3>‘— Slot
Cerrrrrmiamncd ﬁ

o~
- Slox
S
R - NDevice Device
- Sense arnd Ceorrmrmancds
< tro
(\ ID>crenr SRl Doevice

Statu= T — Status

Terryiiraal
I>orarrs

— I>ercrr
(_c) = CCormmamand
Terresirval
IDoors
<..3\'\ - PAXN ————f 1.2
encral — Expected
Bk Iy
Corrvrevaiaea-
tcation — Acce.
A ) Info Req-
13
Terrminal resrrmirml 3> Screen
Screen Sense and — g
Keystroke — <omncrol NS
Terrriirnal
Key=
Customer
Session 1 1.n Has
CustomerlD
PAN
l.n
on
Transaction Uses
TransactuonType
TimeOfDay PAN
Amount ExpectedPIN
ATMnumber Balance
accountType
i.n
1L.n
Terminal
ATMid
Occurs 1 Status
CushOnt tund




MODULE -5

a. Explain the basic concepts of requirements specifications.

Scheme : Definition with explanation and example for each — 5+5 marks
Solution:

Concepts of Requirement specification:
- Data

— Inputs to actions

— QOutputs of actions
- Events

— Inputs to actions

— Outputs of actions
- Actions

- Threads (sequences of actions)
- Devices

10

L2

b. Define the process of ASF testing and illustrate it with an example using the
next date function.
Scheme: Diagram + 4 different sequences — 2+2+2+2+2 marks

Solution:
Table 14.13 NextDate Input Events
@ Event Input Event Description  Statement Numbers

e0 Start program event 1
@ @ el Enter a valid month 67
e2 Enter an invalid month 67
‘ e3 Enter a valid day 69
@ @ ed Enter an invalid day 69
e5 Enter a valid year 71

e6 Enter an invalid year ral

J

Table 14.15 First Attempt at ASFs for NextDate

) Atomic System Function Inputs Outputs

SE-1s 0 e7
Table 14.14 NextDate Output EVenTs ASF-1 start program el
Teent  Output Event Descripts s b ASF-2 enter a valid month el el10
v
Welcome message 2 ASF-3 enter an invalid month e2 ell
e7 -
A 4 v
8 Print today’s date E ASF-4 enter a valid day e3 e12
9 Print tomorrow's date 2
DSy - month OK" 39 ASF-5 enter an invalid day e4 el3
~ 41
el “month out of range pe ASF-6 enter avalid year o5 o
12 “day OK” . ) .
13 ~day out of range” » ASE-7 enter an invalid year e6 els
- - 54
s S . ASE-E print for valid input
15 “year out of range” i
w16 “date OK~ o0 SEY pont for invalid nput
17 “please enter a valid date” 62
el8 “enter a month” 66
e19 “enter a day” o8
-20 "enter a year” 70
e21 “Day Is month, day, year® 89

Table 14.16 Second Attempt at ASFs for NextDate

sromic Svstem Function

Inputs Outputs
ASF-1 start program e0 e’
ASF-2 enter a date with an invalid month, rest OK €2, e3, e5 ell, el2, el4, el7
ASF-3 enter a date with an invalid day, rest OK el, ed, e5 e10, e13, el14, 17
ASF-4 enter a date with an invalid year, rest OK el, e3, e6 €10, e12, e15, e17
ASF-5 enter a date with valid month, day, and year el, e3, e5 e10, e12, el14, 16, e21

A5F-6 enter a date with valid month, rest invalid
45F-7 enter a date with valid day, rest invalid
A5F-8 enter a date with valid year, rest invalid
A5F-4 enter a date with invalid month, day, year

10

L2




(OR)

10.

a. Describe the context of interaction in Software Testing.
Scheme: Definition with explanation and example for each —5+5 marks
Solution:

Because threads execure, they have a strictly positive rime duration. We usually speak of the
execurion time of a thread, but we mighrt also be interested in when thread execurtion begins.

Acrtions are degenerate cases of threads; therefore, acrions also have durations.

1

In a single processor, two threads cannot execute simultaneously. This resembles a fun

]

damental precepr of physics: no two bodies may occupy the same space at the same time
Sometimes threads appear to be simultaneous, as in time-sharing on a single processor:
in fact. rime-shared threads arc interleaved. Even though threads cannot execute s:muhr.l'
neously on a single processor, events can be simultaneous. (This is really problematic for
testers.)

i [ vents }\Al\.t‘ a \(r.\.tl_\' E‘)()Slli\'(' tme (!llr.](‘lll’
execute on port devices, this reduces to the first ground rule.

. . lra-
4 I'wo (or more) INput events can occur \Innlltdﬂc’ﬂtlﬁly. bul an cvent cannot occur sumu
port devices

When we consider events to be acrions that

neously in two (or more) processors. This is immediarely clear if we consider
o l‘l’ \l'l).lr.]((’ l‘flil CSSOrs.

5 In a xlnglc- Processor, {wo output cvents cannot hcgln slrnul(..lnt-nuxly, This is a direct con
sequence of output events being caused by thread execurions. We nced both the instanta
necous and duration views of time to fully explain this ground rule. Suppose rwo OU'TP“:
events are such that the duration of one is much greater than the duration of the other.
durarions may overlap (because they occur on separate devices), bur the start times AR
not be idenrical, as shown in Figure 15.1. An example of this occurs in the SATM sysse™

Event 2
Event 1

——

i

10

L2

b. What is the taxonomy of interaction? Explain the static interaction in a

single process.
Scheme : Definition with explanation and example for each — 3+5+2 marks

Solution:

= Static interactions in a single processor system = Given two propositions P and Q

= Static interactions in multiprocessor system = They are contraries if both cannot be true

= Dynamic interactions in a single processor system = Sub-contraries if both cannot be false

= Contradictories if exactly one is true
= R is a subaltern of P if the truth of P guarantees the
Static Dynamic truthofR—ie.P—-R

= Dynamic interactions in multiprocessor system

P _<—— contraries —» Q

Single Type 1 Type 3 \ /

3 sub-alternation contradictories sub-alternation
a /

T 2 T a R <e— sub-contraries —» S
Muttiple | YP® ype

Static interactions in a single processor

= Analogous to combinatorial circuits

= Model with decision tables and unmarked event-driven
Petri nets

= Telephone system example
= Call display and unlisted numbers are contraries
Both cannot be satisfied
Both could be waived

10

L2

Faculty

Prof. Arvind R
Prof. Saba Tahseen




