

BCS403-database Management System-Scheme of Evaluation and Solution

1.a.Database Definition (2 marks):

A database is a shared collection of logically related data and its description, designed

to meet the information needs of an organization.

Components (8 marks):

.a) Hardware: Computer system, storage devices (disk drives, tapes), I/O devices b)

Software: DBMS software, operating system, application programs c) Data: Both

operational data and the database description/metadata d) Procedures: Instructions and

rules for database design and use e) People: Database administrators, designers, end

users, and programmers f) Modules: DDL for data definition, DML for data manipulation,

and Database Manager for file handling g) Database Manager: Controls data access,

security, and integrity h) Data Dictionary: Stores metadata about database structure and

constraints

1.b Three Schema Architecture:

 Definition (1 mark)

 Each schema description (3 marks - 1 mark each)

 Data independence types (2 marks - 1 mark each)

SOLUTION:

1. Definition (1 mark): Three-schema architecture is a framework that helps achieve

database system properties of data independence and data abstraction using

three levels of data description.

2. Schema Levels (3 marks):

a) External Schema (View Level):

 Describes database part visible to user group

 Multiple user views possible

 Hides complexity of logical structure

b) Conceptual Schema (Logical Level):

 Describes structure of whole database

 Includes logical relationships between data

 Independent of storage details

c) Internal Schema (Physical Level):

 Describes physical storage structure

 Handles data storage and file organization

 Deals with access paths and storage methods

3. Data Independence (2 marks):

a) Logical Data Independence:

 Ability to change conceptual schema without changing external views

b) Physical Data Independence:

 Ability to change internal schema without affecting conceptual schema

1.c.Difference between Logical and Physical Data Independence

1. Key differences (4 marks - 1 mark each point)

SOLUTION IN TABULAR FORMAT:

Logical Data Independence (3 marks)
Physical Data Independence (3

marks)

Involves changes at conceptual level without

affecting external schema

Involves changes at physical level

without affecting conceptual schema

Deals with changes in logical structure (like

adding/removing tables, relationships)

Deals with changes in physical storage

methods and access paths

More difficult to achieve as it may involve

restructuring of database

Easier to achieve as it only involves

internal storage modifications

Protects external user views from changes in

conceptual design

Protects database logical design from

changes in physical storage

Example:

 Logical: Adding new columns to tables without affecting existing applications

 Physical: Changing from sequential to random file organization without impacting

database logic

2.a.ER Diagram for Company Database:

1. Entities and Attributes (3 marks)

o Correct entity sets with rectangles

o Primary keys underlined

o Proper attribute notation

2. Relationships (3 marks)

o Correct relationship diamonds

o Proper relationship names

o Accurate cardinality ratios

3. Constraints (2 marks)

o Foreign key constraints

o Participation constraints

4. ER Diagram (2 marks)

Key Features of the ER Diagram:

1. Main Entities:

o EMPLOYEE (SSN, name, address, salary, etc.)

o DEPARTMENT (dno, dname, mgr_ssn, etc.)

o PROJECT (pnumber, pname, location)

o DEPENDENT (essn, name, relationship)

2. Relationships:

o WORKS_ON (between EMPLOYEE and PROJECT)

o MANAGES (between EMPLOYEE and DEPARTMENT)

o CONTROLS (between DEPARTMENT and PROJECT)

o HAS_DEPENDENT (between EMPLOYEE and DEPENDENT)

3. Cardinality Constraints:

o One department has one manager (1:1)

o One department can have many employees (1:N)

o One employee can work on multiple projects (M:N)

o One employee can have multiple dependents (1:N)

2.b.Notations of ER Diagram:

1. Basic Components (4 marks)

2. Relationship Types & Notations (3 marks)

3. Attribute Types (3 marks)

SOLUTION:

1. Basic Components (4 marks):

a) Entity (1 mark)

 Represented by Rectangle ▭

 Example: EMPLOYEE, STUDENT

 Strong Entity: Single rectangle

 Weak Entity: Double rectangle ⬚

b) Relationship (1 mark)

 Represented by Diamond ◇

 Connects two or more entities

 Example: WORKS_ON, MANAGES

c) Attributes (1 mark)

 Represented by Oval ⭘

 Connected to entity or relationship

 Primary Key: Underlined

d) Connecting Lines (1 mark)

 Solid lines: Regular entities

 Dotted lines: Weak entities

 Lines connect entities to relationships

2. Relationship Types & Notations (3 marks):

a) Cardinality Ratios:

 One-to-One (1:1) → ——||——||——

 One-to-Many (1:N) → ——||——<——

 Many-to-Many (M:N) → ——<——>——

b) Participation Constraints:

 Total: Double line (=)

 Partial: Single line (-)

c) Relationship Degrees:

 Binary: Two entities

 Ternary: Three entities

 n-ary: n entities

3. Attribute Types (3 marks):

a) Simple vs Composite:

 Simple: Single oval

 Composite: Ovals connected to oval

b) Single vs Multi-valued:

 Single: Single oval

 Multi-valued: Double oval

c) Derived vs Stored:

 Stored: Regular oval

 Derived: Dotted oval

3.a.Update operations and contraint violation :

 Types of updates (3 marks)

 Constraint violations (3 marks)

 Solutions/handling (2 marks)

SOLUTION:

a) Types of Update Operations (3 marks):

1. INSERT: Adding new tuples

2. DELETE: Removing existing tuples

3. MODIFY: Changing attribute values

b) Constraint Violations (3 marks):

1. Domain Constraints:

 Data type mismatch

 Value range violation

2. Key Constraints:

 Duplicate primary keys

 Null primary key values

3. Referential Integrity:

 Orphan records

 Invalid foreign keys

c) Handling Violations (2 marks):

1. RESTRICT/REJECT: Refuse invalid updates

2. CASCADE: Propagate changes automatically

3.b Relational algebra operators select ad project

 SELECT operator (3 marks)

 PROJECT operator (3 marks)

SOLUTION:

a) SELECT (σ) Operator (3 marks):

 Definition: Selects tuples based on condition

 Notation: σ<condition>(relation)

 Example: σsalary>50000(EMPLOYEE)

 Characteristics:

o Horizontal partitioning

o Returns matching rows

b) PROJECT (π) Operator (3 marks):

 Definition: Selects specific attributes

 Notation: π<attribute_list>(relation)

 Example: πname,salary(EMPLOYEE)

 Characteristics:

o Vertical partitioning

o Eliminates duplicates

3.c.characteristcis of relations-6 mark (1 Mark for each property)

1. Atomic Values:

 Each attribute value is indivisible

2. No Duplicate Tuples:

 Each row must be unique

3. No Order Among Tuples:

 Row order is insignificant

4. No Order Among Attributes:

 Column order is insignificant

5. Each Attribute Has Unique Name:

 Column names must be distinct

6. Each Cell Contains Single Value:

 No multi-valued attributes allowed

4.a.Problem: (each Subdivision carries 2.5 mark each)

(i) Student ∪ Instructor (Union)-(2.5M)

Fname Lname

Susan Yao

Ramesh Shah

Johnny Kohler

Barbara Jones

Amy Ford

Jimmy Wang

Ernest Gilbert

John Smith

Ricardo Browne

Susan Mao

Francis Johnson

James Shah

(ii) Student ∩ Instructor (Intersection)-(2.5M)

Fname Lname

Susan Mao

James Shah

(iii) Student - Instructor (Difference)-(2.5M)

Fname Lname

Susan Yao

Ramesh Shah

Johnny Kohler

Barbara Jones

Amy Ford

Jimmy Wang

Ernest Gilbert

(iv) Instructor - Student (Difference)-(2.5M)

Fname Lname

John Smith

Ricardo Browne

Francis Johnson

4.b.Problem: (each Subdivision carries 2 mark each)

Given Schema:

 EMP(Eno, Ename, Salary, Address, Phone, DNo)

 DEPT(DNo, Dname, DLoc, MgrEno)

 DEPENDENT(Eno, Dep_Name, Drelation, Dage)

Solutions:

(i) List employees who reside in 'Belagavi'-(2M)

σAddress='Belagavi'(EMP)

(ii) List employees with salary between 30000 and 40000-(2M)

σSalary>=30000 ∧ Salary<=40000(EMP)

(iii) List employees who work for 'Sales' department-(2M)

πEMP.*(σDname='Sales'(EMP ⋈ DEPT))

(iv) List employees who have at least one daughter-(2M)

πEMP.Ename(σDrelation='daughter'(EMP ⋈ DEPENDENT))

(v) List employees with managers' names-(2M)

πE.Ename, M.Ename(ρE(EMP) ⋈ ρM(EMP ⋈ DEPT))

4.c Problem: (each Subdivision carries 2 mark each)

(i) T1 ⋈[T1.P=T2.A] T2 -(2M)

P/A Q R B C

10 a 5 b 6

10 a 5 h 5

25 a 6 c 3

(ii) T1 ⋈[T1.Q=T2.B] T2 -(2M)

P Q/B R A C

15 b 8 10 6

(iii) T1 ⋈[(T1.P=T2.A) AND (T1.R=T2.C)] T2 -(2M)

P/A Q R/C B

10 a 5 h

2. 5.a. INFORMAL DESIGN GUIDELINES FOR SCHEMA DESIGN (8 marks)

1. Ensure Semantics of Attributes -(2M)

o Attributes should be clearly defined

o Relationship between attributes should be meaningful

2. Reduce Redundancy -(2M)

o Minimize duplicate information

o Use foreign keys appropriately

3. Avoid Null Values -(2M)

o Design tables to minimize null entries

o Split tables if too many nulls exist

4. Ensure Data Integrity -(2M)

o Define proper constraints

o Maintain referential integrity

5.b. NORMAL FORMS WITH EXAMPLES (6 marks)

a) 1NF (First Normal Form) -(2M)

 Atomic values in each column

 No repeating groups Example: Before 1NF: Customer(ID, Name,

Phone_Numbers) After 1NF: Customer(ID, Name), Phone(ID, Phone_Number)

b) 2NF (Second Normal Form) -(2M)

 Must be in 1NF

 No partial dependencies Example: Before 2NF: Order(Order_ID, Product_ID,

Product_Name, Quantity) After 2NF: Order(Order_ID, Product_ID, Quantity),

Product(Product_ID, Product_Name)

c) 3NF (Third Normal Form) -(2M)

 Must be in 2NF

 No transitive dependencies Example: Before 3NF: Employee(Emp_ID, Dept_ID,

Dept_Location) After 3NF: Employee(Emp_ID, Dept_ID), Department(Dept_ID,

Dept_Location)

5.c. SQL SYNTAX FOR DML STATEMENTS (6 marks)

a) INSERT Statement -(2M)

INSERT INTO table_name [(column_list)]

VALUES (value1, value2, ...);

b) UPDATE Statement -(2M)

UPDATE table_name

SET column1 = value1, column2 = value2

WHERE condition;

c) DELETE Statement -(2M)

DELETE FROM table_name

WHERE condition;

Variable Constraints:

 Must maintain referential integrity

 Check constraints before operations

 Handle null values appropriately

 Consider cascading effects

6.a. a. Insertion, Deletion, and Modification Anomalies-10M

 Insertion Anomaly-(2M)

 Occurs when you cannot insert data into a database due to the absence of other

data. For example, if you cannot add a student without assigning them to a class.

 Deletion Anomaly-(2M)

 Occurs when deleting data inadvertently causes loss of additional data. For

instance, deleting a class record might also remove related student data

 Modification Anomaly: -(2M)

 Occurs when changes to data require multiple updates. For example, changing a

student's advisor requires updating multiple records.

 Examples--(4M)

6.b. Datatypes in SQL- (5M)

 Examples include INT, VARCHAR, DATE, BOOLEAN, etc.

Substring Pattern Matching in SQL- (5M)

Use the LIKE operator, e.g., SELECT * FROM Students WHERE name LIKE ‘%John%’.

7.a. SQL Queries-10M

Given the relations:

 Student(Snum, Sname, Branch, level, age)

 Class(Cname, meet_at, room, fid)

 Enrolled(Snum, Cname)

 Faculty(fid, fname, deptid)

(i) Find names of all Juniors enrolled in class taught by I. Teach: -(2M)

SELECT DISTINCT S.Sname

FROM Student S

JOIN Enrolled E ON S.Snum = E.Snum

JOIN Class C ON E.Cname = C.Cname

JOIN Faculty F ON C.fid = F.fid

WHERE S.level = 'JR' AND F.fname = 'I. Teach';

(ii) Find names of all classes meeting in room R128 or have five or more students

enrolled: -(2M)

SELECT DISTINCT C.Cname

FROM Class C

WHERE C.room = 'R128'

UNION

SELECT C.Cname

FROM Enrolled E

JOIN Class C ON E.Cname = C.Cname

GROUP BY C.Cname

HAVING COUNT(E.Snum) >= 5;

(iii) For all levels except JR, print level and average age of students for that level: -

(2M)

SELECT S.level, AVG(S.age) AS average_age

FROM Student S

WHERE S.level <> 'JR'

GROUP BY S.level;

(iv) For each faculty teaching only in room R128, print name and total classes

taught: -(2M)

SELECT F.fname, COUNT(DISTINCT C.Cname) AS total_classes

FROM Faculty F

JOIN Class C ON F.fid = C.fid

WHERE C.room = 'R128'

GROUP BY F.fname;

(v) Find names of students not enrolled in any class: -(2M)

SELECT S.Sname

FROM Student S

LEFT JOIN Enrolled E ON S.Snum = E.Snum

WHERE E.Cname IS NULL;

7.b.Correlated Nested Queries(2M+2M)

Correlated nested queries are subqueries that depend on the outer query for their

values. They are executed once for each row processed by the outer query. Example:

SELECT S1.Sname

FROM Student S1

WHERE S1.age > (SELECT AVG(S2.age) FROM Student S2 WHERE S2.branch =

S1.branch);

7.c. ACID Properties(6M)

Atomicity: -(2M)

 Ensures that all operations within a transaction are completed; otherwise, none are.

Consistency: -(1M)

Ensures the database remains in a consistent state before and after the transaction.

Isolation: -(1M)

 Ensures that concurrent transactions do not affect each other.

Durability: -(2M)

Ensures that once a transaction is committed, it will remain so, even in the event of a

system failure.

8. a. Views in SQL-(2+24M)

Views are virtual tables in SQL that are based on the result of a SELECT query. They

do not store data themselves but display data stored in other tables.Example:

CREATE VIEW StudentView AS

SELECT Sname, Branch

FROM Student

WHERE level = 'JR';

8.b. Usage of GROUP BY and HAVING Clauses(3+3M)

The GROUP BY clause is used to arrange identical data into groups.

The HAVING clause is used to filter records that work on aggregated data.

Example:

SELECT Branch, COUNT(*)

FROM Student

GROUP BY Branch

HAVING COUNT(*) > 10;

8.c. Problems with Concurrent Transactions(10M)

Concurrent transactions can lead to several issues:

Lost Update: -(2M)

When two transactions update the same data, and one update is lost.

Dirty Read: -(2M)

When a transaction reads data that has been modified by another transaction but

not yet committed.

Non-Repeatable Read: -(2M)

 When a transaction reads the same row twice and gets different data each time.

Phantom Read: -(2M)

When a transaction reads new rows added by another transaction.

Example for each-(2M)

9. a. Two-Phase Locking Protocol-(6M)

The Two-Phase Locking Protocol ensures serializability by dividing the execution of

a transaction into two phases:

Growing Phase: -(3M)

Locks can be acquired but not released.

Shrinking Phase: -(3M)

Locks can be released but not acquired.

This protocol prevents cycles in the wait-for graph, ensuring serializability.

b. Wait-Die and Wound-Wait Protocols-(8M)

Wait-Die Protocol: -(4M)

 Older transactions may wait for younger ones, but younger transactions requesting

locks held by older ones are aborted ("die").

Wound-Wait Protocol: -(4M)

 Older transactions requesting locks held by younger ones preempt the younger

ones ("wound"), forcing them to abort.

These protocols help prevent deadlocks by ensuring a consistent ordering of

transactions.

c. Four Major Categories of NoSQL Systems--(6M)

Key-Value Stores: (2M)

Simple storage systems using a key-value pair (e.g., Redis).

Document Stores: (2M)

Store data in document formats like JSON (e.g., MongoDB).

Column-Family Stores: (1M)

Store data in columns rather than rows (e.g., Cassandra).

Graph Databases: (1M)

Designed for data with complex relationships (e.g., Neo4j).

10.a. a. Multiple Granularity Locking-10M

Multiple Granularity Locking (2M)

It allows transactions to lock resources at various levels of granularity (e.g.,

database, table, row). It uses intention locks to indicate a transaction's intention to

acquire locks at a finer granularity.Example:

Intention Shared (IS): (4M)

Intends to acquire shared locks.

Intention Exclusive (IX): (4M)

Intends to acquire exclusive locks.

10.b. MongoDB CRUD Operations- (6M)

i. Insert: - (2M)

db.collection.insertOne({ name: "Alice", age: 25 });

ii. Delete: - (2M)

db.collection.deleteOne({ name: "Alice" });

iii. Read: - (2M)

db.collection.find({ age: { $gt: 20 } });

10.c. A Neo4j model - (2M)

It is a representation of data in a graph database format, where data is stored as

nodes, relationships, and properties rather than traditional tables and columns. This

structure is highly effective for representing connected data, such as social

networks, recommendation systems, and hierarchical structures, making Neo4j

popular for these applications.

Core Elements of a Neo4j Model- (2M)

Nodes: The primary entities, like "Person," "Product," or "City." Each node can have

labels that describe its role in the model (e.g., :User, :Product) and can also have

various properties (like name, age, or creation date).

1. Relationships: Connect two nodes and represent their interactions or

dependencies (e.g., FRIENDS_WITH, PURCHASED, LOCATED_IN).

Relationships also have directions and can have properties (like relationship

length, timestamp, etc.).

2. Properties: Attributes or values assigned to nodes or relationships, such as age,

price, timestamp, or weight.

3. Labels: Categories that can be applied to nodes to group them (like :Person, :City).

This helps simplify data queries.

