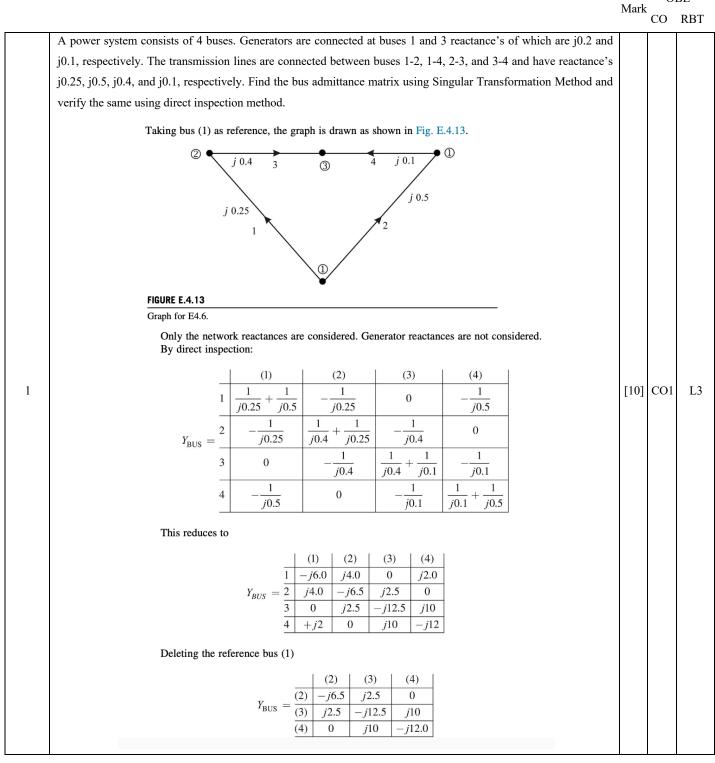
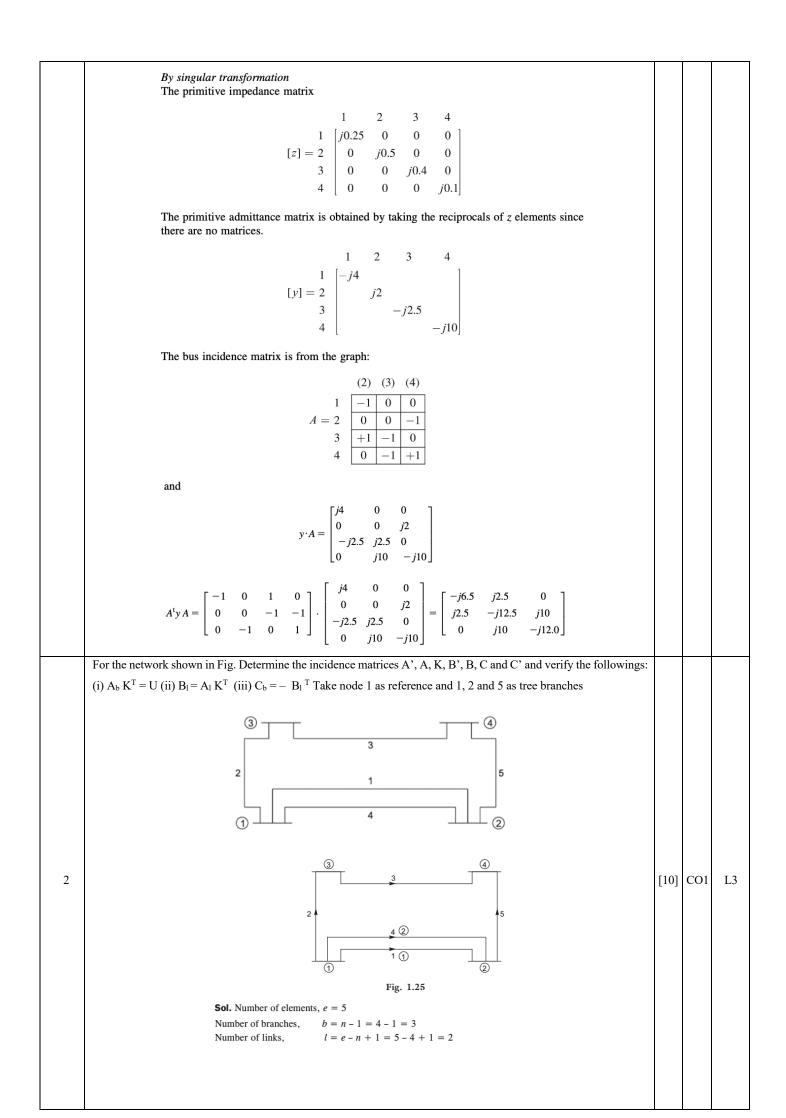
CM	IR INSTITUTE OF TECH	USN							CMRIT		
Internal Assessment Test I – June - 2024											
Sub:	Bub: Power System Analysis - II Code:					21	21EE62				
Date:	06/06/2024	Duration:	90 Min	Max Marks:	50	Sem:	6	Section:	A & B		
Note: Answer any FIVE FULL Questions & Sketch Neat Figures Wherever Necessary.											

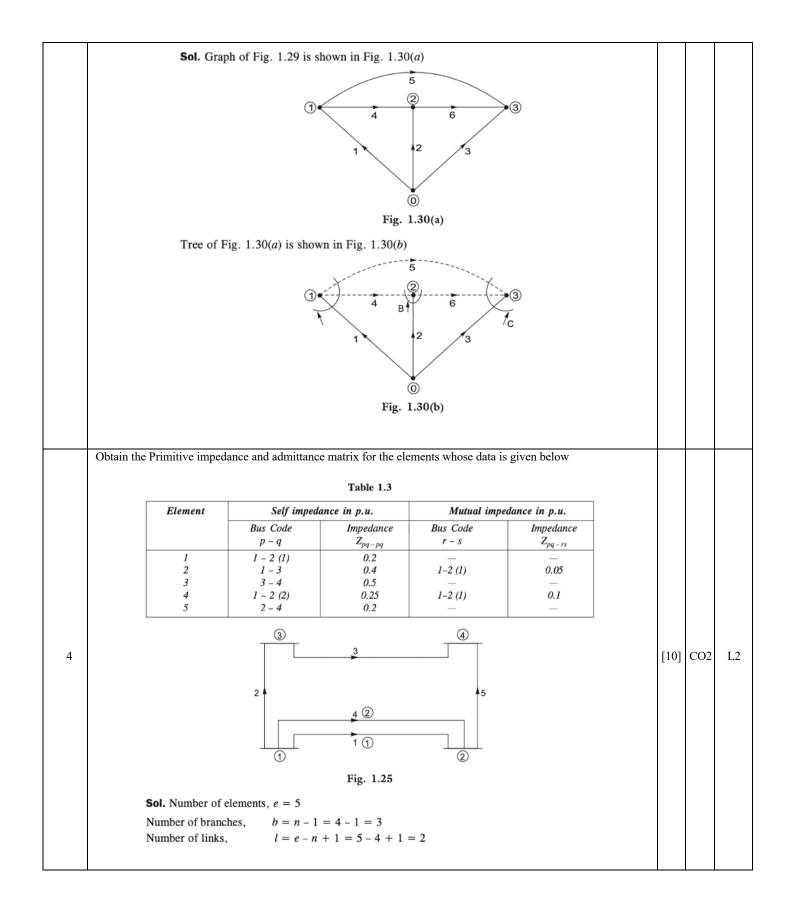
OBE





	<u> </u>	1
Element-node incidence matrix (A')		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
1 1 - 1 0 0		
$A' = 3 \qquad 0 \qquad 0 \qquad 1 \qquad -1 \qquad 0$		
$A' = \begin{array}{ccccccccccccccccccccccccccccccccccc$		
5 0 1 0 -1 Bus-incidence matrix (A)		
A = 2 3 0 -1 0 0 1 -1 (:: (1) is reference node)		
4 -1 0 0		
5 1 0 - 1		
$\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix}$		
$A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$		
-1 0 0		
$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$		
Primitive impedance matrix [z] e/e 1 2 3 4 5		
$1 \begin{bmatrix} 0.2 & 0.05 & 0 & 0.1 & 0 \end{bmatrix}$		
$z = \frac{2}{3} \begin{bmatrix} 0.05 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \\ 4 & 0.1 & 0 & 0 & 0.25 & 0 \end{bmatrix}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$		
Primitive admittance matrix $y = [z]^{-1}$		
$\begin{bmatrix} 0.2 & 0.05 & 0 & 0.1 & 0 \\ 0.05 & 0.4 & 0 & 0 & 0 \end{bmatrix}^{-1}$		
$y = [z]^{-1} = \begin{bmatrix} 0.05 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \end{bmatrix}$		
$y = [z]^{-1} = \begin{bmatrix} 0.05 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \\ 0.1 & 0 & 0 & 0.25 & 0 \\ 0 & 0 & 0 & 0 & 0.25 \end{bmatrix}$		
To calculate z^{-1} there are two methods:		
Method 1:		
$\begin{bmatrix} 0.2 & 0.05 & 0 & 0.1 & 0 \\ 0.05 & 0.4 & 0 & 0 & 0 \end{bmatrix}^{-1}$		
$y = [z]^{-1} = \begin{bmatrix} 0.05 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \end{bmatrix}$		
$y = [z]^{-1} = \begin{bmatrix} 0.2 & 0.05 & 0 & 0.1 & 0 \\ 0.05 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \\ 0.1 & 0 & 0 & 0.25 & 0 \\ 0 & 0 & 0 & 0 & 0.2 \end{bmatrix}^{-1}$		
$\begin{bmatrix} 0 & 0 & 0 & 0 & 0.2 \end{bmatrix}$		
Step 5. Interchange columns 3 and 4		
$y' = \begin{bmatrix} 6.5 & -0.81 & 0 & -2.6 & 0 \\ -0.81 & 2.6 & 0 & 0.33 & 0 \\ -2.6 & 0.33 & 0 & 5 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$		
$y' = \begin{vmatrix} -2.6 & 0.33 & 0 & 5 & 0 \end{vmatrix}$		
$\begin{bmatrix} 0 & 0 & 0 & 0 & 5 \end{bmatrix}$ Step 6. Interchange rows 3 and 4		
$y = [z^{-1}] = \begin{bmatrix} 6.5 & -0.81 & 0 & -2.6 & 0\\ 0.81 & 2.6 & 0 & 0.33 & 0\\ 0 & 0 & 2 & 0 & 0\\ -2.6 & 0.33 & 0 & 5 & 0\\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$		
$y = [z^{-1}] = \begin{bmatrix} 0 & 0 & 2 & 0 & 0 \end{bmatrix}$		
Limitations: This method is applicable if only the matrices A_2 and A_3 are having the elements zero's only. Otherwise it is not applicable.		
- **		

Step 1. Interchange rows 3 and 4 $y' = \begin{bmatrix} 0.2 & 0.05 & 0 & 0.1 & 0 \\ 0.05 & 0.4 & 0 & 0 & 0 \\ 0.1 & 0 & 0 & 0.25 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.2 \end{bmatrix}^{-1}$ Step 2. Interchange columns 3 and 4 $y'' = \begin{bmatrix} 0.2 & 0.05 & 0.1 & 0 & 0 \\ 0.05 & 0.4 & 0 & 0 & 0 \\ 0.1 & 0 & 0.25 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0 & 0.2 \end{bmatrix}^{-1} = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$ Step 3. Above matrix can divide into 4 submatrices $\mathbf{A}_1 = \begin{bmatrix} 0.2 & 0.05 & 0.1 \\ 0.05 & 0.4 & 0 \\ 0.1 & 0 & 0.25 \end{bmatrix}$ $A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \quad A_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\mathbf{A}_4 = \begin{bmatrix} 0.5 & 0\\ 0 & 0.2 \end{bmatrix}$ $A_1^{-1} = \begin{bmatrix} 6.5 & -0.81 & -2.6 \\ -0.81 & 2.6 & 0.33 \\ -2.6 & 0.33 & 5.0 \end{bmatrix}$ $\mathbf{A_4}^{-1} = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$ Step 4. $y'' = \begin{bmatrix} A_1^{-1} & A_2 \\ \hline A_3 & A_4^{-1} \end{bmatrix}$ $y'' = \begin{bmatrix} 6.5 & -0.81 & -2.6 & 0 & 0 \\ -0.81 & 2.6 & 0.33 & 0 & 0 \\ -2.6 & 0.33 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$ For the given network shown in Fig. draw the graph and tree. Write the cut-set and loop schedule. 5 NN 3 46 NN 0 MM [10] CO2 L3 3 \sim



Element-node incidence matrix (A')	
$e^{n} (1) (2) (3) (4)$ $1 (1 - 1) (0) (0)$ $A' = 3 (0) (0) (1 - 1)$ $4 (1 - 1) (0) (0)$ $5 (0) (1 - 0) (-1)$ $b (1 - 1) (1 - 1)$	
2 1 0 - 1 0	
A' = 3 0 0 1 -1	
4 1 -1 0 0	
5 0 1 0 -1	
Bus-incidence matrix (A)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 -1 0 0	
A = 2 0 -1 0	
3 0 1 -1 (\because (1) is reference node)	
4 -1 0 0	
$A = \begin{bmatrix} e \\ 2 \\ 3 \\ 4 \\ -1 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
$\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix}$	
0 - 1 0	
$A = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}$	
Primitive impedance matrix $[z]$	
e/e 1 2 3 4 5	
1 [02 005 0 01 0]	
$z = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} \begin{bmatrix} 0.2 & 0.05 & 0 & 0.1 & 0 \\ 0.05 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \\ 0.1 & 0 & 0 & 0.25 & 0 \\ 0 & 0 & 0 & 0 & 0.2 \end{bmatrix}$	
$z = \frac{2}{2}$ 0.05 0.4 0 0 0	
Primitive admittance matrix $y = [z]^{-1}$	
$y = [z]^{-1} = \begin{bmatrix} 0.2 & 0.05 & 0 & 0.1 & 0\\ 0.05 & 0.4 & 0 & 0 & 0\\ 0 & 0 & 0.5 & 0 & 0\\ 0.1 & 0 & 0 & 0.25 & 0\\ 0 & 0 & 0 & 0 & 0.2 \end{bmatrix}^{-1}$	
0.05 0.4 0 0 0	
$y = [z]^{-1} = \begin{bmatrix} 0 & 0 & 0.5 & 0 & 0 \end{bmatrix}$	
0.1 0 0 0.25 0	
To calculate z^{-1} there are two methods:	
Method 1:	
$\begin{bmatrix} 0.2 & 0.05 & 0 & 0.1 & 0 \end{bmatrix}^{-1}$	
0.05 0.4 0 0 0	
$y = [z]^{-1} = \begin{bmatrix} 0 & 0 & 0.5 & 0 & 0 \end{bmatrix}$	
0.1 0 0 0.25 0	
$y = [z]^{-1} = \begin{bmatrix} 0.12 & 0.00 & 0 & 0.11 & 0 \\ 0.05 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \\ 0.1 & 0 & 0 & 0.25 & 0 \\ 0 & 0 & 0 & 0 & 0.2 \end{bmatrix}$	

Step 1. Interchange rows 3 and 4

$$y' = \begin{bmatrix} 0.2 & 0.05 & 0 & 0.1 & 0 \\ 0.05 & 0.4 & 0 & 0 & 0 \\ 0.1 & 0 & 0 & 0.25 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.2 \end{bmatrix}^{-1}$$

Step 2. Interchange columns 3 and 4

$$y'' = \begin{bmatrix} 0.2 & 0.05 & 0.1 & | & 0 & 0 \\ 0.05 & 0.4 & 0 & | & 0 & 0 \\ 0.1 & 0 & 0.25 & | & 0 & 0 \\ 0 & 0 & 0 & | & 0.5 & 0 \\ 0 & 0 & 0 & | & 0 & 0.2 \end{bmatrix}^{-1} = \begin{bmatrix} A_1 & | & A_2 \\ A_3 & | & A_4 \end{bmatrix}$$

Step 3. Above matrix can divide into 4 submatrices

Å

Å

$$A_{1} = \begin{bmatrix} 0.2 & 0.05 & 0.1 \\ 0.05 & 0.4 & 0 \\ 0.1 & 0 & 0.25 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \quad A_{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.2 \end{bmatrix}$$

$$A_{4}^{-1} = \begin{bmatrix} 6.5 & -0.81 & -2.6 \\ -0.81 & 2.6 & 0.33 \\ -2.6 & 0.33 & 5.0 \end{bmatrix}$$

$$A_{4}^{-1} = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$$

Step 4.

$$y'' = \begin{bmatrix} A_1^{-1} & | & A_2 \\ A_1 & - & A_{-1} \\ A_3 & | & A_4^{-1} \end{bmatrix}$$
$$y'' = \begin{bmatrix} 6.5 & -0.81 & -2.6 & 0 & 0 \\ -0.81 & 2.6 & 0.33 & 0 & 0 \\ -2.6 & 0.33 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

Step 5. Interchange columns 3 and 4

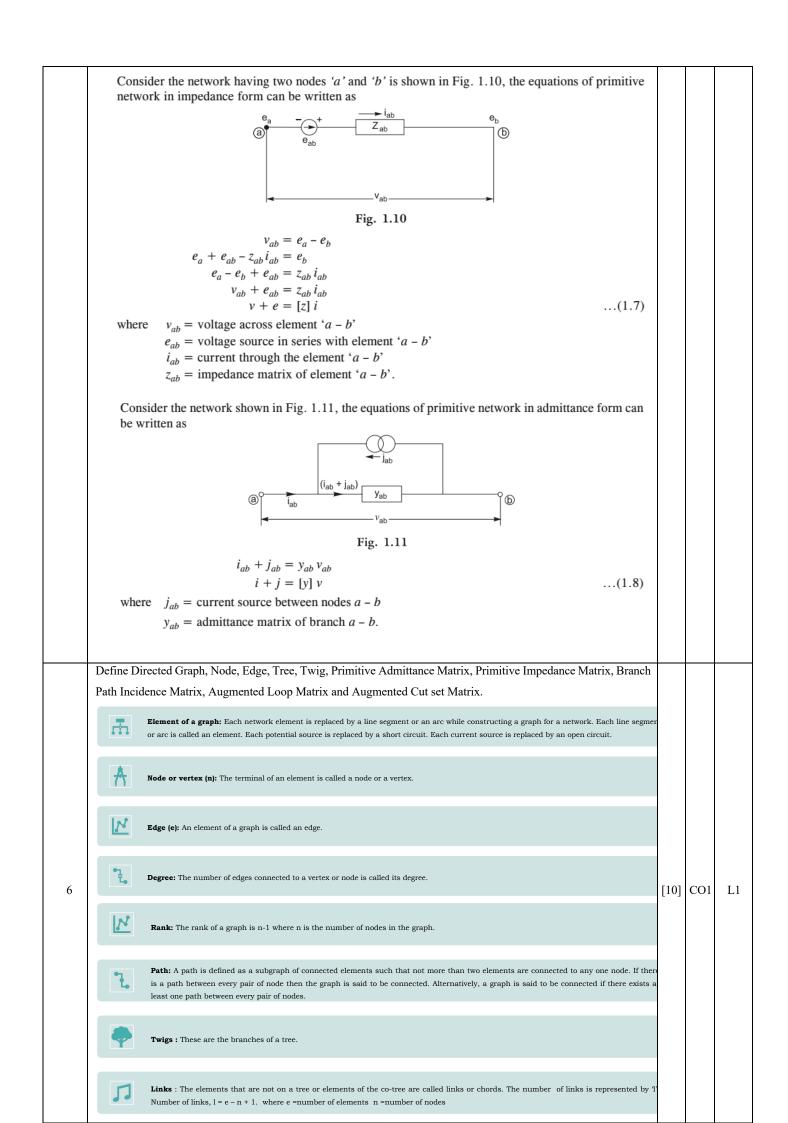
$$y' = \begin{bmatrix} 6.5 & -0.81 & 0 & -2.6 & 0 \\ -0.81 & 2.6 & 0 & 0.33 & 0 \\ -2.6 & 0.33 & 0 & 5 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

Step 6. Interchange rows 3 and 4

$$y = [z^{-1}] = \begin{bmatrix} 6.5 & -0.81 & 0 & -2.6 & 0 \\ 0.81 & 2.6 & 0 & 0.33 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ -2.6 & 0.33 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

Limitations: This method is applicable if only the matrices A_2 and A_3 are having the elements zero's only. Otherwise it is not applicable.

	Develop the relation between I _{bus} , V _{bus} and Y _{bus} by assuming no mutual coupling between transmission lines of a three-bus system					
L	The bus impedance matrix Z _{Bus} and bus admittance matrix Y _{Bus} can be determined by using the bus incidence matrix 'A' to related variable parameters of the primitive network quantities of the inter- connected network.					
	From the primitive network equation (1.8)					
	$i + j = [y] v \qquad \dots (1.9)$ Pre-multiplying the both sides with A ^T $A^{T} i + A^{T} j = A^{T} [y] v \qquad \dots (1.10)$					
	$A^{T} i + A^{T} j = A^{T} [y] v$ (1.10) According to Kirchhoff's current law, the algebraic sum of currents meets at any node is equal to zero.					
	<i>i.e.</i> , sum of currents meeting at a node = $A^T i = 0$ (1.11) Similarly $A^T j$ = sum of current sources of element incidence at a node and is equal to impressed bus current. It is a column vector $A^T j = I_{Bus}$ (1.12)					
	Substituting the equations (1.11) and (1.12) in equation (1.10), we get $I_{Bus} = A^{T} [y] v \qquad \dots (1.13)$					
	Power into the network $= [I^*_{Bus}]^T V_{Bus}$ $= \text{the sum of powers in the primitive network, } i.e., [j^*]^T v$					
5(a)	Therefore, $[I^*_{Bus}]^T V_{Bus} = [j^*]^T v$ (1.14) Taking conjugate transpose of equation (1.12), it is modified as	[5]	CO1	L2		
	$[A^{T}]^{*T} [j^{*}]^{T} = [I^{*}_{Bus}]^{T} \qquad \dots (1.15)$ But A is a real matrix so $A^{*} = A$, From matrix property $[A^{T}]^{T} = A$					
	Applying these two conditions in equation (1.15), we get $[I^*_{Bus}]^T = A[j^*]^T$ (1.16) Substituting the equation (1.16) in equation (1.14) and simplify $A[j^*]^T V_{Bus} = [j^*]^T v$					
	$A V_{Bus} = v \qquad \dots (1.17)$ Substituting the 'v' from equation (1.17) in equation (1.13)					
	$\therefore \qquad I_{Bus} = A^{T} [y] A V_{Bus} \qquad \dots (1.18)$ Bus frame reference of admittance form as					
	$I_{Bus} = [Y_{Bus}] V_{Bus}$ Equating the equations (1.1) and (1.18), we get					
	$[Y_{Bus}] = A^{T} [y] A \qquad \dots (1.19)$ And Z _{Bus} can be determined by					
	$[Z_{Bus}] = [Y_{Bus}]^{-1} = \{A^{T}[y] A\}^{-1} \qquad \dots (1.20)$					
5(b) V	What is a primitive network? Obtain the impedance and admittance form of the primitive network.	[5]	CO1	L2		



• Graph: An element is said to be incident on a node, if the node is a terminal of the element. Nodes can be incident to one or more elements. The network can thus be represented by an interconnection of elements. The actual interconnections of the elements give a graph.		
• Subgraph: Any subset of elements of the graph is called a subgraph. A subgraph is said to be proper if it consists of strictly less than all the elements and nodes of the graph.		
• Oriented Graph: If each line segment of a graph is assigned with a direction, it is called as a oriented graph.		
• Connected Graph: When there exits at least one path between every pair of nodes, then the graph is called as a connected graph.		
• Planar graph: A graph is said to be planar, if it can be drawn without- out cross over of edges. Otherwise, it is called nonplanar.		
• Closed path or loop: The set of elements traversed starting from one node and returning to the same node form a closed path or loop.		

***** ALL THE BEST *****

Signature of Paper Setter(s)

Signature of CCI

 $\operatorname{HOD}-\operatorname{EEE}$
