USN					

Internal Assessment Test - I

Sub:	POWER SYSTEM PLANNING							Code:		18EE824		
Date:	16/03/2024	Duration:	90 mins	Max Marks:	50	Sem:	8th A & B	Bran	nch:	EEE		
Answer Any FIVE FULL Questions												
									Marks	_s Ol	OBE	
									Iviaik	CO	RBT	
	Explain the need and importance of load forecasting in power system? Mention different techniques of load forecasting.								10	CO1	L2	
, ,	Explain in detail the planning process? Also enumerate the components of Planning.								10	CO1	L2	
3	With a block diagram explain the least cost utility planning.								10	CO2	L2	
4 1	Write a short note on i) Rural Electrification Investment ii) Credit - Risk Assessment							10	CO1	L1		
5	Explain integrated power generation planning.								10	CO1	L2	
6	Explain unloading a system.								10	CO1	L2	

CCI	CI	HOD
		H()I)
		1100

CMR	
INSTITUTE OF	USN
TECHNOLOGY	

Internal Assessment Test - I

Sub:	Sub: POWER SYSTEM PLANNING Co							Cod	e:	18EE	824
Date:	16/03/2024	Duration:	90 mins	Max Marks:	50	Sem:	8th A & B	Bran	nch:	EEE	
		An	swer Any	FIVE FULL	Questio	ns					
							Marks	OBE			
										CO	RBT
	Explain the need and	-		precasting in po	ower sy	stem? N	Mentio	n	10	CO1	L2
different techniques of load forecasting.								10	COI	122	
')	Explain in detail the planning process? Also enumerate the components of								10	CO1	L2
	Planning.										
3	With a block diagram explain the least cost utility planning.								10	CO2	L2
4	Write a short note on i) Rural Electrification Investment ii) Credit - Risk						10	CO1	L1		
4	Assessment								COI	Lı	
5	5 Explain integrated power generation planning.								10	CO1	L2
6	6 Explain unloading a system.							10	CO1	L2	

PSP IAT I QP & Solution

1. Explain the need and importance of load forecasting in power system? Mention different techniques of load forecasting.

Need and Importance:

- Forecasting: systematic procedure for quantitatively defining future loads.
- Demand forecast
 - To determine capacity of generation, transmission and distribution required
- Energy forecast
 - To determine the type of generation facilities required.
- Classification depending on the time period:
 - **Short term** (daily, hourly)
 - **Intermediate** (seasonal, yearly)
 - Long term (supply side/demand side resource management)

Techniques:

- Moving average :
 - arithmetic or weighted average of a no. of points of the series
 - A minimum of **two years** of past energy consumption is desirable, if seasonal effects are present.
 - more the **history**, the better
- Trend projections:
 - A trend line is fitted into the mathematical equation
 - it is projected into the future using the equation
 - study of the past behavior and mathematical modeling & extrapolation of the future behavior
- Trend projections: Two general approaches:
- 1. Regression analysis:
 - **Fitting of continuous math functions** through actual data to achieve least overall error
- 2. Fitting of a sequence on discontinuous lines / curves
 - Prevalent in **short term forecasting**

- 2. Explain in detail the planning process? Also enumerate the components of Planning.
 - Process of taking careful decision.
 - Process of **selecting vision**, values, **mission** and objectives, decide plan to achieve them.
 - Input for planning is **quality** of systematic **thought** that goes into **decision**.
 - Process of establishing power industry is time consuming and capital intensive.
 - Planning saves project time and utilizes resource economically
 - Planning should consider
- I. 1.uncertinity about future
- II. alternative action choices
- III. goals and constraints

Fig. 1.1 Components of the planning process

It consists of **three** cyclical components

Learning about the environment related issues and possible future scenarios to identify:

- a. Strategically goals
- b. Decision criteria and constraints

c. Technological needs and opportunities.

Thinking about existing plans, associated costs and risks.

This involves

- a. Investment of resources
- b. Unforeseen factors
- c. Reliability of outcome

Preferred plans based on support analysis

3. With a block diagram explain the least cost utility planning.

LEAST COST UTILITY PLANNING

The logic for least-cost planning

Process of least cost planning

Evaluation:

- All options should be assessed in a consistent manner for a full cycle
- Once initial **evaluation is complete**, **environmental**, **economic factors** should be studied avoids loosing out on options with high impact

• Non cost factors should be evaluated – variability of factors, alternative solutions based on factor variation

Investments on power systems:

- Capital cost
- Interest on capital
- Fuel cost

Operational and maintenance cost – loss dependent

- 4. Write a short note on i) Rural Electrification Investment ii) Credit Risk Assessment i) Rural Electrification Investment
 - · Indirect socio -economic advantages
 - NCAER analysis says Benefit cost ratio is > 1
 - Power economy committee of CEA accepted benefit-cost analysis, and taken that into consideration during sanctions and execution of schemes
 - ii) Credit Risk Assessment

Someone has to be responsible to pay the debt

- 1. Construction stage: completion risk positive cash flow
- 2. Operational stage: a. Fuel
 - b. Revenue Return
- 5. Explain integrated power generation planning.

INTEGRATED RESOURCE PLANNING

• Utilities have to evaluate all supply side & demand side options.

1. Supply side options:

- a. Better **technology**
 - **conventional plants** combustion turbines ,low emission
 - clean coal, Flue gas desulphurization etc.
- b. Increasing role of renewables
 - broaden the scope of non-conventional sources
- c. Increasing availability of generating stations
- d. Efficient operation of regional and national grid

e. Strengthening of existing **T & D** systems (by adding new links & capacitor banks) to **reduce loss** and **improve voltage profiles**

NTEGRATED RESOURCE PLANNING

- 2. Demand side options:
 - a. Taking energy conservation methods
 - b. Maintaining **consumer PF** should be made mandatory (not less than **0.95 lagging**)
 - c. Load management /staggering
 - improving generating stations load factor
 - **d.** Time of day tariff peak / night / other time
- e. Captive power generation
- f. Checking pilferage
 - 6. Explain unloading a system.

Unloading of system
Energy saving through resource planning:

- 1. Evaluate demand and supply side options and rank according to cost effectiveness
- a. long-term plan: vision, utility's expectation in terms of capacity from sources, new construction, purchases and DSM
- b. Short term(5 yrs): Very specific programs (installation of capacitors, routing new circuits for future use)
- 2. Demand side management
- 3. Private participation

Supply side options:

- I. Pricing options: interruptible tariffs, load limiter tariffs,
- II. time differentiated tariffs etc
- III. Metering and communication facilities

Pricing mechanism is better option concerned to both consumer and power boards

Better option compared to power cuts and peak period

In South Korea 3 time differentiated tariffs are present

- 1. peak rate
- 2. Partial peak rate
- 3. Off peak rate

Initially 5:2:1 followed by 7:2.5:1 and 2.33:1.55:1

KEPCO took 18 months preparatory period to explain new tariff to consumers