CMR USN

INSTITUTE OF

TECHNOLOGY Internal Assessment Test - I11

Sub: IMICROCONTROLLERS Code: BCS402
Date: Duration: {90 mins 50 Sem: | ¢ Branch: CS(DS)
Marks:
Answer Any FIVE FULL Questions
Marks OBE
CO | RBT
1 [Explain with a neat diagram memory Hierarchy. 10 [CO5| L2
2 |With a neat diagram explain ARM processor exceptions and modes. 10 |CO4| L2
3 |[Explain assigning interrupts and interrupt latency. 10 |CO4| L2
4 |Define Firmware. Explain firmware execution flow and explain Red Hat RedBoot. 10 |CO4| L3
5 |Briefly explain cache line replacement policies. 10 |CO5| L2
6 |[Explain the basic architecture of cache memory. 10 [CO5| L2
Briefly explain what happens when an IRQ and FIQ exception is raised with an
7 10 |[CO4| L2
ARM processor.
CCl Cl HOD
CMR
osh | | LT
INSTITUTE OF
TECHNOLOGY Internal Assessment Test - III
Sub: [MICROCONTROLLERS Code: BCS402
;) Max 4th
Date: Duration: {90 mins 50 Sem: | ¢ Branch: CS(DS)
Marks:
Answer Any FIVE FULL Questions
Marks OBE
CO | RBT
1 |[Explain with a neat diagram memory Hierarchy. 10 |CO5| L2
2 |With a neat diagram explain ARM processor exceptions and modes. 10 |[CO4| L2
3 |[Explain assigning interrupts and interrupt latency. 10 |[CO4| L2
4 |Define Firmware. Explain firmware execution flow and explain Red Hat RedBoot. 10 |[CO4| L3
5 |Briefly explain cache line replacement policies. 10 |[CO5| L2
6 |Explain the basic architecture of cache memory. 10 |[CO5| L2
7 Briefly explain what happens when an IRQ and FIQ exception is raised with an ARM 10 |coal L2
processor.
CClI Cl HOD

v i

IAT III_MICROCONTROLLERS_solution

1.
The Memory Hierarchy and Cache Memory
i e [meen N
Chi : 1 I \
v Tightly coupleo_ ¢ |
_____ 1 memory [Level 1 cuche | | Write buffer | |
i SRAM R i
i Muain i = ‘""‘"‘:":“""“*,
1 memory | | :
Board i / DRAM S ‘T".L""“*'
i /Fluhundolherboml—levcl nonvolatile memory N i_ ______ i
i :: Read path
Device 1 —
i flt:l::tl.") e . ‘Wri te path
The Memory Hierarchy and Cache Memory
A memory hierarchy depends as much on architectural design as on the technology

surrounding it.

For example, TCM and SRAM are of the same technology yet differ in architectural
placement: TCM is located on the chip, while SRAM is located on a board.

A cache may be incorporated between any level in the hierarchy where there is a
significant access time difference between memory components.

A cache can improve system performance whenever such a difference exists.

A cache memory system takes information stored in a lower level of the hierarchy
and temporarily moves it to a higher level.

The Memory Hierarchy and Cache Memory

Processor core:

v o

The innermost level of the hierarchy is at the processor core.

This memory is so tightly coupled to the processor that in many ways it is
difficult to think of it as separate from the processor.

This memory is known as a register file.

These registers are integral to the processor core and provide the fastest
possible memory access in the system.

The Memory Hierarchy and Cache Memory

Tightly coupled memory (TCM):

-

vVobd

Memory components are connected to the processor core through dedicated
on-chip interfaces.

The primary level is main memory.

It includes volatile components like SRAM and DRAM, and nonvolatile
components like flash memory.

The purpose of main memory is to hold programs while they are running on a
system.

L1 and L2 cache (Primary and Secondary caches)

The L1 and L2 caches are also known as the primary and secondary caches.

The L1 cache is an array of high-speed, on-chip memory that temporarily

holds code and data from a slower level.

- A cache holds this information to decrease the time required to access both
instructions and data.

- The write buffer is a very small FIFO buffer that supports writes to main
memory from the cache.

- An L2 cache is located between the L1 cache and slower memory.

X’

The Memory Hierarchy and Cache Memory

The secondary storage:

-> storage—Ilarge, slow, relatively inexpensive mass storage devices such as
disk drives or removable memory.

- In this level is data derived from peripheral devices, which are characterized
by their extremely long access times.

- Secondary memory is used to store unused portions of very large programs
that do not fit in main memory and programs that are not currently executing.

= Modes of operation

~-ARM processor has 7 modes of operation.

-Switching between modes can be done manually
through modifying the mode bits in the CPSR register.
-Most application programs execute in user mode

-Non user modes (called privileged modes) are entered
to serve interrupts or exceptions

-The systerm mode is special mode for accessing protected
resources. It don‘t use registers used by exception hanlders, so
it can‘t be corrupted by any exception handler error!!!

Processor Mode

Description

User (usr) Normal program execution mode
FIQ (fig) Fast data processing mode
IRQ (irq) For general purpose interrupts

Supervisor (svc)

A protected mode for the operating system

Abort (abt)

When data or instruction fetch is aborted

Undefined (und)

For undefined instructions

3 System (sys)

Privileged mode for OS Tasks

An exception is any condition that needs to halt normal execution of the instructions.

= Vector table

It is a table of addresses that the ARM core branches to
when an exception is raised and there is always branching
instructions that direct the core to the ISR.

4

At this place in memory, we
find a branching instruction

Idr pc, [pc, #_IRQ_handler_offset]

_

Address Exception Mode on entry
0x00000000 | Reset Supervisor
0x00000004 | Undefined instruction | Undefined
0x00000008 | Software interrupt Supervisor
0x0000000C | Abort (prefetch) Abort
0x00000010 | Abort (data) Abort
0x00000014 | Reserved Reserved
0x00000018 | IRQ IRQ
0x0000001C | FIQ FlQ

in

« Assigning interrupts

It is up to the system designer who can decide
which HW peripheral can produce which interrupt.

But system designers have adopted a standard
design for assigning interrupts:

*SWI are used to call privileged OS routines.
*IRQ are assigned to general purpose interrupts like

periodic timers.
*FIQ is reserved for one single interrupt source that
requires fast response time.

« Interrupt latency

It is the interval of time from an external interrupt
signal being raised to the first fetch of an instruction
of the ISR of the raised interrupt signal.

System architects try to achieve two main goals:

*To handle multiple interrupts simultaneously.
*To minimize the interrupt latency.

And this can be done by 2 methods:

«allow nested interrupt handling
-give priorities to different interrupt sources

27

N
”n,

\/
°*

N
”n

The firmware is the deeply embedded, low-level
software that provides an interface between the
hardware and the application/operating system level
software.

It resides in the ROM and executes when power is
applied to the embedded hardware system.

Firmware can remain active after system initialization
and supports basic system operations.

The choice of which firmware to use for a particular
ARM-based system depends upon the specific
application, which can range from loading and executing
a sophisticated operating system to simply relinquishing
control to a small microkernel.

Stage Features

Set up target platform Program the hardware system registers
Platform identification
Diagnostics
Debug interface
Command line interpreter

Abstract the hardware = Hardware Abstraction Layer
Device driver

Load a bootable image Basic filing system

Relinquish control Alter the pc to point into the new image

> RedBoot is a firmware tool developed by Red
Hat. It is provided under an open source
license with no royalties or up front fees.
RedBoot is designed to execute on different
CPUs (for instance, ARM, MIPS, SH, and so
on).
It provides both debug capability through
GNU Debugger (GDB), as well as a
bootloader.

> The RedBoot software core is based on a HAL.

= Communication—configuration is over serial or Ethernet.
= RedBoot supports a range of network standards, such as
bootp, telnet, and tftp.

= Flash ROM memory management—provides a set of filing
system routines that can

download, update, and erase images in flash ROM.

= In addition, the images can either be compressed or
uncompressed.

= Full operating system support—supports the loading and
booting of Embedded Linux,

Red Hat eCos, and many other popular operating systems. For
Embedded Linux,

RedBoot supports the ability to define parameters that are
passed directly to the kernel upon booting.

5.

Cache Policy

There are three policies that determine the operation of a cache: the write
policy, the replacement policy, and the allocation policy.

The cache write policy determines where data is stored during processor
write operations.

The replacement policy selects the cache line in a set that is used for the
next line fill during a cache miss.

The allocation policy determines when the cache controller allocates a cache
line.

Write Policy

When the processor core writes to memory, the cache controller has two
alternatives for its write policy.

The controller can write to both the cache and main memory, updating the
values in both locations; this approach is known as writethrough.

The cache controller can write to cache memory and not update main
memory, this is known as writeback or copyback.

Writethrough

and main memory when there is a cache hit on write, ensuring that the cache
and main memory stay coherent at all times.

Under this policy, the cache controller performs a write to main memory for
each write to cache memory.

writeback policy.

vy

vy

Writeback

When a cache controller uses a writeback policy, it writes to valid cache data
memory and not to main memory.

Valid cache lines and main memory may contain different data.

The cache line holds the most recent data, and main memory contains older
data, which has not been updated.

Cache Line Replacement Policies

On a cache miss, the cache controller must select a cache line from the
available set in cache memory to store the new information from main
memory.

The cache line selected for replacement is known as a victim.

If the victim contains valid, dirty data, the controller must write the dirty data
from the cache memory to main memory before it copies new data into the
victim cache line.

The process of selecting and replacing a victim cache line is known a
eviction.

Cache Line Replacement Policies

The strategy implemented in a cache controller to select the next victim is
called its replacement policy.

The replacement policy selects a cache line from the available associative
member set; that is, it selects the way to use in the next cache line
replacement.

To summarize the overall process, the set index selects the set of cache lines
available in the ways, and the replacement policy selects the specific cache
line from the set to replace.

Replacement Policies

Round-robin or cyclic replacement:

>
>

>

Simply selects the next cache line in a set to replace.
The selection algorithm uses a sequential,
incrementing victim counter that increments each time
the cache controller allocates a cache line.

When the victim counter reaches a maximum value, it
is reset to a defined base value.

Replacement Policies

Pseudorandom replacement policy:

>
>

>

Randomly selects the next cache line in a set to replace.

The selection algorithm uses a nonsequential incrementing victim
counter.

In a pseudorandom replacement algorithm the controller increments
the victim counter by randomly selecting an increment value and
adding this value to the victim counter.

When the victim counter reaches a maximum value, it is reset to a
defined base value.

Allocation Policy on a Cache Miss

There are two strategies ARM caches may use to allocate a cache line after a
the occurrence of a cache miss.

The first strategy is known as read-allocate

The second strategy is known as read-write-allocate.

The ARM7, ARM9, and ARM10 cores use a read-allocate on miss policy.

The Intel XScale supports both read-allocate and write-allocate on miss.

*

-
o

-
A4

Read Allocate

A read allocate on cache miss policy allocates a cache line only during a read
from main memory.

If the victim cache line contains valid data, then it is written to main memory
before the cache line is filled with new data.

Under this strategy, a write of new data to memory does not update the
contents of the cache memory unless a cache line was allocated on a
previous read from main memory.

If the cache line contains valid data, then a write updates the cache and may
update main memory if the cache write policy is writethrough.

If the data is not in cache, the controller writes to main memory only.

Read-Write Allocate

A read-write allocate on cache miss policy allocates a cache line for either a read or write to
memory.

Any load or store operation made to main memory, which is not in cache memory, allocates
a cache line.

On memory reads the controller uses a read-allocate policy.

On a write, the controller also allocates a cache line.

If the victim cache line contains valid data, then it is first written back to main memory
before the cache controller fills the victim cache line with new data from main memory.

If the cache line is not valid, it simply does a cache line fill.

After the cache line is filled from main memory, the controller writes the data to the
corresponding data location within the cache line.

The cached core also updates main memory if it is a writethrough cache.

Cache Architecture

Address issued Cache Cache
by processor core controller memory
31 — Miss
N Directory
Hit store Status Data
| — - -
Ta, —
’ ’-— Compase Cache-tag |v |d [word3 | word2 [word] | word0 }Cache
Cache-tag }v | d [word3 | word2 | word1 | word0 line
12| | _< Cache-tag v |d |word3 | word2 | word1 | wordO
11 ’
< p
~ Set . | Cache-tag [v]d [word3 [word2 [word T [word0
index Cache-tag |v|d|word3 | word2 [wordl | word0 || A ddress/data
Cache-tag | v|d |word3 | word2 | word1 | wordO || s
4 Cache-tag | v |d [word3 | word2 [word1 | wordO
3 -1 Cache-tag [v|d |word3 | word2 | word1 | word(
Data -
index j L J
oL ¥

Cache Architecture
ARM uses two bus architectures in its cached cores, the Von Neumann and the
Harvard.

The Von Neumann and Harvard bus architectures differ in the separation of the
instruction and data paths between the core and memory.

A different cache design is used to support the two architectures.

Von Neumann architecture

In processor cores using the Von Neumann architecture, there is a single cache
used for instruction and data.

This type of cache is known as a unified cache.

A unified cache memory contains both instruction and data values.

Harvard architecture

The Harvard architecture has separate instruction and data buses to improve
overall system performance, but supporting the two buses requires two caches.

In processor cores using the Harvard architecture, there are two caches: an
instruction cache (l-cache) and a data cache (D-cache).

This type of cache is known as a split cache.

In a split cache, instructions are stored in the instruction cache and data values
are stored in the data cache.

Cache Architecture

The two main elements of a cache are the cache controller and the cache
memory.

The cache memory is a dedicated memory array accessed in units called cache
lines.

The cache controller uses different portions of the address issued by the
processor during a memory request to select parts of cache memory.

Cache Architecture

It has three main parts:a directory store, a data section, and statu information.

All three parts of the cache memory are present for each cache line.

The cache must know where the information stored in a cache line originates from in main

memory. It uses a directory store to hold the address identifying where the cache line was

copied from main memory. The directory entry is known as a cache-tag.

- A cache memory must also store the data read from main memory. This information is held
in the data section.

- The size of a cache is defined as the actual code or data the cache can store from main
memory. Not included in the cache size is the cache memory required to support
cache-tags or status bits.

- Status bit

v iy

Status bits

Two common status bits are the valid bit and dirty bit.

A valid bit marks a cache line as active, meaning it contains live data
originally taken from main memory and is currently available to the processor
core on demand.

= A dirty bit defines whether or not a cache line contains data that is different
from the value it represents in main memory.

vl

vl

220 ZS R Z 7 7

Cache Controller

The cache controller is hardware that copies code or data from main memory to cache
memory automatically.

It performs this task automatically to conceal cache operation from the software it supports.
The same application software can run unaltered on systems with and without a cache.
The cache controller intercepts read and write memory requests before passing them on to
the memory controller. It processes a request by dividing the address of the request into
three fields, the tag field, the set index field, and the data index field.

The controller uses the set index portion of the address to locate the cache line within the
cache memory that might hold the requested code or data. This cache line contains the
cache-tag and status bits, which the controller uses to determine the actual data stored
there.

Cache Controller

The controller then checks the valid bit to determine if the cache line is active, and
compares the cache-tag to the tag field of the requested address.

If both the status check and comparison succeed, it is a cache hit.

If either the status check or comparison fails, it is a cache miss.

On a cache miss, the controller copies an entire cache line from main memory to cache
memory and provides the requested code or data to the processor.

The copying of a cache line from main memory to cache memory is known as a cache line
fill.

On a cache hit, the controller supplies the code or data directly from cache memory to the
processor.

To do this it moves to the next step, which is to use the data index field of the address
request to select the actual code or data in the cache line and provide it to the processor.

Enabling an IRQ/FIQ
Interrupt:

MRS

r1, cpsr

BICr1, r1, #0x80/0x40

MSR

cpsr_c, r1

Disabling an IRQ/FIQ
Interrupt:

MRS 1, cpsr
ORR 1, r1, #0x80/0x40
MSR cpsr_c, r1

cpsrvalue IRQ FIQ
Pre nzevqIFt_SVC nzevq)lFt_SVC
Code enable irg enable fig
MRS rl, cpsr MRS rl, cpsr
BIC rl, r1, #0x80 BIC rl, rl, #0x40
MSR cpsrc, rl MSR cpsrc, rl
Post nzevqjikt_SVC nzevjlft_SVC

