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Explain Runge Kutta Method for the solution of Swing Equation for transient stability analysis.

Introduction to the Swing Equation: The swing equation is a fundamental equation used in power
system stability studies, particularly in transient stability analysis. It describes the dynamic
behavior of a synchronous machine (generator) during disturbances. The swing equation is a
second-order nonlinear differential equation that relates the rotor angle § (the angle between the
rotor magnetic field and the stator magnetic field) to the electrical power and mechanical power

acting on the generator.

The swing equation is given by:
d*§ P,—-P,
ar ~ M
Where:
« J is the rotor angle in radians.
o P, is the mechanical power input to the generator.
« P, is the electrical power output of the generator.

e M is the inertia constant of the machine.

For transient stability analysis, the equation is often expressed in terms of the angular velocity

_ dd.
w = G

dw

E:mepe((s)

This leads to a system of first-order differential equations:

s
E—UJ
dw P, — P.(5)

dt M

Runge-Kutta Method: The Runge-Kutta method is a powerful numerical technique for solving
ordinary differential equations (ODEs). The most commonly used version is the 4th-order Runge-

Kutta method, which provides a good balance between accuracy and computational effort.

For the swing equation, the 4th-order Runge-Kutta method can be used to numerically solve the
system of differential equations over small time steps h. The method estimates the value of § and
w at the next time step by considering the weighted average of four estimates (slopes) of the

derivative.

Let t,, be the current time, d,, and w,, be the current values of the rotor angle and angular velocity,

respectively. The next values §,,,1 and w,, .1 are computed as follows:

1. Compute intermediate slopes:
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kK =h-w,

Pm _Pe((sn)
M

kw
kgzh-(wn+ 21)

P, — P, (5n+’“§)
M

kw
k§:h-(wn+72>

P =h-

kS =h-

PP (6, +5

ki =h (wn + k)
Pn—P. (8, + K
ki =h- A(4 )

2. Update § and w using weighted average:

1
Opi1 = 0n + g(kf + 2K3 4 2k5 + k9)

1
Wnil = Wy + E(k‘f + 2k5 + 2k + Kf)
3. Advance the time step:
tht1 = tn + h

Summary:

« The Runge-Kutta method allows accurate numerical integration of the swing equation by

iteratively computing the rotor angle and angular velocity at successive time steps.

« This method is particularly useful in transient stability analysis where precise modeling of the

generator's response to disturbances is crucial.

* By applying the Runge-Kutta method, power system engineers can predict whether a power
system will remain stable or lose synchronism following a disturbance, such as a fault or

sudden change in load.

This process is repeated until the desired time span for the simulation is covered. The results can

be analyzed to determine the stability of the power system under transient conditions.

1(b)

Explain the algorithm for short circuit analysis using Bus Impedance Matrix.
In order to apply the four steps of Algorithm for Short Circuit Computation developed earlier to large

systems, it is necessary to evolve a systematic general algorithm so that a digital computer can be used.
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Fig. 9.20 n-bus system under steady load
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Consider an n-bus system shown schematically in Fig. 9.20 operating at steady load. The first step
towards Short Circuit Computation is to obtain prefault voltages at all buses and currents in all lines
through a load flow study. Let us indicate the prefault bus voltage vector as
Ve
Vous=|% (9.18)

Let us assume that the rth bus is faulted through a fault impedance Z/. The postfault bus voltage vector
will be given by

Véus = Vgus + A4V (9.19)

where
e AV is the vector of changes in bus voltages caused by the fault.
As step 2, we drawn the passive Thevenin network of the system with generators replaced by

transient/subtransient reactances with their emfs shorted
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Fig. 9.20 n-bus system under steady load
As per step 3 we now excite the passive Thevenin network with — V° in series with Z'as in Fig. 9.21.

The vector AV comprises the bus voltages of this network.

Now
AV = Zyysd” (9.20)
Where
Zy e 2y,
Zyys=| i | = bus impedance matrix of the
Zi v L passive Thevenin network

(9.21)
Jf = bus current injection vector

Since the network is injected with current -I¥ only at the rth bus, we have

9.22)

Substituting Eq. (9.22) in Eq. (9.20), we have for the rth bus

AV,=~ "l/

By step 4, the voltage at the rth bus under fault is

vi=ve + AVe = V0 - Z If 9.23)




However, this voltage must equal
vi=2z/l! (9.24)
We have from Egs. (9.23) and (9.24)

zZiV=v'-z I

7 4
s L
or Z + 77 (9.25)
At the ith bus (from Eqgs (9.20) and (9.22))
av,=-z,/
vi=v-z, i=1,2, .., n (9.26)
substituting for I” from Eq. (9.25), we have
f= VO — _Z"’_V0
VI V: Z"+Z[ r (927)
Fori=rinEq.(9.27)
V= L’,Tv," (9.28)
72

In the above relationship Vi®s, the prefault bus voltages are assumed to be known from a load flow study.
Zpus matrix of the short-circuit study network of Fig. 9.21 can be obtained by the inversion of its
Ysus matrix or the Zpus building algorithm. It should be observed here that the SC study network of Fig.
9.21 is different from the corresponding load flow study network by the fact that the shunt branches
corresponding to the generator reactances do not appear in the load flow study network. Further, in
formulating the SC study network, the load impedances are ignored, these being very much larger than
the impedances of lines and generators. Of course synchronous motors must be included in Zgus formula-
tion for the SC study.

Postfault currents in lines are given by

V=Y, (V- V) 9.29)

For calculation of postfault generator current, examine Figs. 9.22(a) and (b). From the
load flow study (Fig. 9.22(a))

0
Xa o i X I(’;’ i
X e XK =
A
f \
E Vo Ea( v/
| |
— —- .
(a) (b)
Fig. 9.22

Prefault generator output = Pg; + jQg;

L= E%QG—'; (prefault generator output = Pg; + jQ)
! (9.30)
El'g=V+ fX/G.IOc; 9.31)

From the SC study, Vfiis obtained, It then follows from Fig. 9.22(b) that

i = i
.

X'g, e




Derive the generalize algorithm for finding Zbus
e Added between an old bus and reference bus.
e Added between two old buses.
e Added between new bus to reference bus.

e Added between new bus and existing bus

Modification of an existing bus impedance matrix

Let us denote the orginal Z, of a system with n- number of independent buses as Z__ .
When a branch of impedance Z, is added to thc system the Z , gets modified. The branch impedance i
can be added to the original systcm in the following four different ways.

Case 1 : Adding a branch of impedance Z, from a new bus-p to the reference bus.
Case 2 : Adding a branch of impedance Z, from a new bus-p to an existing bus-q.
Case 3 : Adding a branch of impedance Z, from an existing bus-q to the reference bus.
Case 4 : Adding a branch of impedance Z, between two existing buses h and q.

The modification of Z , for the above four cases have been presented here without proof

Case 1 : Adding Z, from a new bus-p to the reference bus.

Consider a n-bus system as shown in fig 1.9. Let us add a bus-p through an impedance Z, to the
reference bus. The addition of a bus will increase the order of the bus impedance.

n-bus : 0
system "o
bus.new orig : I (1.78)
_______ ' 0
0 0 ... 0: Z,
reference bus

Fig 1.9 : Adding a new bus through
an impedance to reference bus.

In this case the elements of (n + 1)* column and row are all zeros except the diagonal. The diagonal
element is the added branch impedance Z, The elements of original Z_ matrix are not altered. The new
bus impedance matrix will be as shown in equ (1.78).

Case 2 : Adding Z, from a new bus-p to an existing bus-q.

Consider a n-bus system as shown in fig 1.10. in which a new bus-p is added through an impedance
Z, to an existing bus-q. The addition of a bus will increase the order of the bus impedance matrix by one.

1
—| Bus-q | Z,
| qu
7. - Zosy T (1.79)
' nbus | L L Zy
bus-p system Z,Z, ... Z, :qu-&-Zh

Fig 1.10 : Adding a new bus through
an impedance to an existing bus.

In this elements of (n + 1)" column are the elements of q* column and elements of (n + 1)"row are
the elements q" row. The diagonal element is given by sum of qu and Z, .The elements of original Z, matrix
are not altered. The new bus impedance matrix will be as shown in equ (1.79).

Case 3 : Adding Z, from an existing bus-q to the reference bus

Consider a n-bus system shown in fig 1.11 in which an
impedance Z, is added from an existing bus-q to the reference bus. Let — bus-p
us consider as if the impedance Z, is connected from a new bus-p and a-bus
existing bus-q. Now it will be an addition as that of case-2. The new 7 system
bus impedance matrix order (n + 1) can be formed as that of case-2. "
Then we can short-circuit the bus-q to reference bus. This is equivalent
to eliminating (n + 1)" bus (i.e., bus-p in this case) and so the bus rc%u’(.ncc. bus

impedance matrix has to be modified by eliminating (n + 1)* row and Fig 1.11 : Adding an impedance

(n + 1)" column. The reduced bus impedance matric can be formed  penween existing bus and reference.

by a procedure similar to that of bus elimination in bus admittance

matrix, developed in section 1.5. This reduced bus impedance matrix is the actual new bus impedance

matrix. Every element of actual new bus impedance matrix can be determined using the equation (1.80).
-7 - Z;(nol)z(nol)k (l 80)

jk,act 13 Z
(n+1)n+1)
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Note: 1. Z, , is the impedance corresponding to row-j and column-k of actual new bus impedance

matrix.

22,7 Z

o Lo Loty Zige ey Are impedance of new bus impedance matrix of order (n + 1).

3. Since bus impedance matix is symmetrical

ij‘:wl = Zk;.:m
Case 4 : Adding Z, between two existing buses h and g — bus-h
Consider a n-bus system shown in fig 1.12, in which an impedance n-bus
Z, is added between two existing buses h and q. Z, system
In this case the bus impedance matrix is formed as shown in bus-q
equ(1.81). Here the elements of (n + 1)* column is the difference between

the elements of column-h and column-q. The elements of (n + 1)" row is
the difference between the elements of row-h and row-q. The diagonal
element is given by equ(1.82).

Fig 1.12 : Adding an impedance
between bus-h and bus-q.

bus,new orig

Z(n-lxnn) =Z+Z,+Z,-2Z

hq

Since the modification does not involve addition of new bus, the order of new bus impedance matrix
has to be reduced to nxn by eliminating the (n + 1)" column and (n + 1)* row.

This reduced bus impedance matrix is the actual new bus impedance matrix.Every element of this
actual new bus impedance matrix can be determined using equ (1.80) which is also given below for reference.
Z .2

_ _ Sin+nCeak
jkact — ik V4

Z

(n+1)n+1)

Determine Zwus for system whose reactance diagram is shown in fig where the impedance is given in p.u.

preserve all the three nodes.

000
0.3
|
|
Reference bus

i1.2
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Step 1: Consider the branch with impedance
j1.2 p.u. connected between bus-1 and reference as Fig 1.17.1
shown in fig 1.17.2. The system shown in fig 1.17.2.
has a single bus and so the order of bus impedance matrix is on, as shown in below.

z,,=[i12] ©)

Step 2: Connect bus-2 to bus-1 through an impedance j0.2 as shown in fig 1.17.3. 1.2
This is case-2 modification and so the order of bus impedance matrix increases by one. In
the new bus impedance matrix, the elements of 1* column are copied as elements of 2™ Reference bus

column and the elements of 1** row are copied as elements of 2"row.The diagonal elements

is given by Z | + Z, where Z, =j0.2. Fig 1.17.2

j1.2 j1.2+j0.2

bus

itz 12 ] [tz 12
“lj12 j1.4

Step 3: Connect the bus -3 to bus-2 through an impedance j0.15 as shown in fig 1.17.4. This is case-2
modification and so the order of the bus impedance matrix increases by one. In the new bus impedance matrix the
elements of 2**row are copied as elements of 3 row. The diagonal element is given by Z,,+ Z, where Z, =j0.15.

om0

jlL2 j1.2  j1.2 0.2
z, =[il2 14 14
j1.2 j1.4 j1.4+j0.15 i.2

jil2 j1.2 jl.2 Reference bus
= [jL2 j14 j14 '
j1.2 j1.4 j1.55 Fig 1.17.3

ol O i ©)
Step 4 : Connect the impedance j1.5 from bus-3 to reference bus j0.2 @ j0.15
as shown in fig 1.17.5. This is case-3 modification. In case-2 and then

the last row and column are eliminated by node elimination techniques. ji1.2

In new bus impedance matrix the elements of 3* column are

copied as elements of 4" column and the elements of 3% row are copied Reference bus

as elements of 4" row. The diagonal element is given by Z,, + Z, where Fig 1.17.4
Z, =jl5.
jl2 jl.2 jl.2 jl.2 jl.2 jl.2 jl1.2 jl1.2
|2 j14 j14 j14 | [j12 jl4 j14 jl4
b [j1.2 jl.4 j1.55 j1.55 | |jl1.2 jl.4 j1.55 j1.55

j1.2 jl.4 j1.55 j1.55+j1.5| |j1.2 j1.4 j1.55 j3.05

The actual new bus impedance matrix is obtained by eliminating the 4" row and 4" column. The element Z,
of the actual new bus impedance matrix is given by,

Z

(n+ l)z(n,m .
z‘k'm=z“- : wheren=3; j=1,2,3 andk=1,2,3
(n+1)n+1)




Z.7Z jl.2x 1.2

—7 _“u%a_i1o_ _
1act =2, Z, j1.2 i3.05 j0.728
_ 2,2, s jl12xjl4 .
Z,..=2; Z, 12 305 - j0.649
Z,,2,, j1.2%j1.55 _
zI 3,act ZH - Z;;’ 12— ’*]30 ****** =j0.590
Z,..=Zp..=10.649
- 232y jldxjld
2200t Z,, jl4 73.05 j0.757
_ 2,2, . jlL4xjl.55 .
Zygu =Ty~ T, =11 00 = 10,689
2, ..=25,,=10.59
zu..m =2,,,,=0.689
_ 2,2, . j1.55%j1.55 .
Zyy =~ =g = (185 - ERGSSS = j0762

j0.728 j0.649 j0.590
j0.649 j0.757 j0.689
j0.590 j0.689 j0.762

L 2,=

- .
02 @ o5

j1.2 5

Reference bus

Fig 1.17.5

Step 5: Connect the impedance j0.3 between bus-1 and bus-3 as shown in fig 1.17.6.

This is case-4 modification.

In new bus impedance matrix, the elements of 4th column are
obtained by substracting the elements of 3rd column from 1* column
and the elements of 4" row are obtained by substracting the elements
of 3rd row from 1st row.The diagonal element Z , is given by the
following equation.

Zy=2,+2),+ 2~ 22,
where Z, =j0.3

" Z,,=J0.3+0.728 + j0.762 — 2(j0.59) = j0.61

j0.728 j0.649 j0.590
7z - j0.649 j0.757 j0.689
bus j0.59 j0.689 j0.762
j0.728 -j0.59 j0.649 -j0.689 j0.59 - j0.762
j0.728 j0.649 j0.590 j0.138
7 _[10.649 j0.757 j0.689 -0.04
ws | j0.59 j0.689 j0.762 -j0.172
j0.138 -0.04 -j0.172 j0.61

®

0.3

i ®

g

LS5 i
02 @) 015
i1.2 1.5
Reference bus

Fig 1.17.6

j0.728 - j0.59
j0.649 - j0.689
j0.59 - j0.762

j0.61

Since this modification does not add a new bus, the 4th row and column has to be eliminated using node
elimination technique, to determine the actual new bus impedance matrix. The element Z* of actual new bus

impedance matrix is given by.

What are the transmission loss Coefficients? Derive an expression for transmission loss as a function of

plant generation for a two-plant system.

Transmission Loss Coefficients (B-Coefficients)

Transmission losses in a power system occur due to the resistance of transmission lines. These losses are

a function of the power flowing through the lines and can be represented mathematically using

transmission loss coefficients, also known as B-Coefficients.

[10]
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Expression for Transmission Loss in a Two-Plant System

For a power system with two generating plants, the transmission loss P;, can be expressed as a
quadratic function of the power outputs of the plants P; and P». The general expression for

transmission loss is:

Py = By P} + ByuP} + 2B, PP,

Where:
o Pj is the power generated by Plant 1.
e P, is the power generated by Plant 2.

e Bi1, By, and Bis are the transmission loss coefficients for the two-plant system.

Derivation of Transmission Loss Expression
1. Total Power Generation:

Let Pp be the total power demand. The sum of power generated by both plants must meet

the demand plus the transmission losses:

P +P,=Pp+ Py

2. Transmission Loss Function:

The total transmission loss in the syste’ |, an be represented using the B-Coefficients as

mentioned earlier:

P, = B P? + ByyP} + 2By P\ Py

3. Power Balance Equation:

Substituting the transmission loss equation into the power balance equation:
Py + Py = Pp + (B P} + By P} + 2B12 P Py)
4. Solving for Power Generation:

This equation can be used to determine the power outputs P; and P, of the two plants, given

the power demand Pp and the B-Coefficients.

Special Case: Symmetrical System

If the two generating plants are similar (i.e., the transmission loss coefficients are symmetrical,
meaning B1; = By and B1s = Bs;), the expression simplifies, and further analytical solutions

can be derived depending on the given coefficients and demand.

5(a)

Derive an expression for economic load schedule for an n plant system neglecting the transmission losses

Economic load scheduling aims to distribute the total power demand among multiple generating
plants in a way that minimizes the total fuel cost while meeting the power demand. When

transmission losses are neglected, the problem simplifies significantly.

Step-by-Step Derivation

1. Objective Function:

The total fuel cost C' for an n-plant system can be expressed as the sum of the individual

costs of operating each plant:
n
c=3c(p)
i=1

where:
« C;(P,) is the fuel cost function of the i-th plant.

« P, is the power generated by the i-th plant.

The fuel cost function C’,(P,-) is typically a quadratic function of the power output:

Ci(P) = a; + b;P, + ¢;P}

where a;, b;, and ¢; are cost coefficients for the i-th plant.
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2. Power Balance Constraint:

The total power generated by all the plants must equal the total power demand Pp:

n
S PPy
i=1

3. Lagrange Multiplier Method:

To minimize the total cost subject to the power balance constraint, we use the method of

Lagrange multipliers. The Lagrangian function L is defined as:
n n
L= CiP)+A (ZB —PD>
i=1 i=1
where \ is the Lagrange multiplier.

4. Optimality Condition:

To find the minimum cost, take the derivative of the Lagrangian with respect to P; and set it

to zero:
oL _ dCi(P)
= +A=0
OP; dP;
Simplifying, we get: )
oL Ci(P;
= dCi(P) +A=0
P, dP;
Simplifying, we get:
dCi(P) _
P,
. dCy(P) . . . . o
Since —ip s the incremental cost of generation at plant 7, denoted as IC;, we can write:

IC; = bj + 2¢;P; = A

This equation implies that the incremental cost of generation for all plants should be equal to
the Lagrange multiplier A for optimal economic dispatch.

5. Economic Dispatch Equation:
The economic dispatch condition for the i-th plant is:
bi +2¢; P, = A
Since A is the same for all plants, we can equate the incremental costs of different plants:

by +2¢1 Py = by + 2¢2 P = ... = b, + 2¢, P,

6. Solving for Power Outputs:

To solve for the individual power outputs P;, express P; in terms of A:

p_A=b

=
2C,‘

Substituting this into the power balance equation:

n )\—bz
Z( 20,’ )ZPD

i=1

Solve this equation for A, and then substitute back to find each P;.

7. Summary Expression:

The final expression for the power generated by each plant is:

A-b

P
261‘

where \ is determined by:
b;
S0 (2) + Po
1
o T ()




5(b)

Explain the steps involved in solving power system stability solution of swing equation using point by

point method

Consider the swing equation of a power system.

H d°5
=P, -P. 5.85
nf 4t ( )
We know that, M = ff ..... (5.86)

P.=P,.sind (5.87)
P,=P,-P.=P,-P,,sind . (5.88)

o 478

LM =R

d's P,

- (5.89)

The equation (5.89) in a nonlinear equation. During transient state the § is a function of time, t
and so it can be denoted as 3(t). In point-by-point method, the solution of 3(t) is obtained by dividing the
time into small equal values of At. (i.e., the entire time (range) of interest is divided into number of small
equal interval At).

The accelerating power and the change in speed are also continuous function of time. They are
discretized as follows,

1. The accelerating power P, computed at the beginning of an interval is assumed to remain
constant from the middle of the preceding interval to the middle of the interval being
considered.

2. The angular velocity is assumed constant throughout any interval. This constant value is the

value corresponding to the midpoint of concerned interval.

The discretization of P_ and @ are shown in fig 5.13.
Continuous
P, [0) solution

Discrete solution Discrete solution d

Pun ml\ A - \
P ®, !

-1 . 1 - |

- Continuous ’ 'y
P | - [

) il solution [ T

[ B | LI R T B

1 I I I I | 1 1 I I

' 1 1 ' 1 ) ' ' i L L )
n-2 n-1 n YAt n-2 n-1 n YAt

Note : The n represents discretized time instant and it pertains to the end of the interval.
Fig 5.13 : Discretization of P, and .
For each discrete interval the values of P, ® and § are calculated as shown below.

The solution starts from the initial condition values, which corresponds to a stable operating point.
Let §, be the angle corresponding to initial operating point.

Let us assume that, the values ® and § for (n —1)"interval are known

8, = Thevalue of § at the end of (n —1)" interval
o, ,, = Thevalueof w at the end of (n —1)" interval
P .., = ValueofP attheendof (n—1)"interval.

Now from equ(5.89) we get,

P,=P,~P  sind (5.90)
The equ (5.89) can be written in the modified form as shown in equ(5.91)
o L . (5.91)

dt M
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where, ® = (31? and do = d’s

dt  dt?
For small changes in 8, the equation (5.91) can be linearized as shown below
Am _ P,
At M
At
SoAe=—=—P, 5.92
0= (5.92)
Let®_,, = The value of ® at the end of n* interval.
For calculating n" interval value of o, put, Aw =®_,, —® ,,andP =P b in equ(5.92).
Opog2— Wy3 :=% Py
At
O3 = 0, I—MPM"'“ ..... (5.93)
For small changes in 8, we can write
Ad
=— 5.94
o=" (5.94)
To solve for change in & in (n —1)" interval put A = A8 _ and © = ©_,, in equ(5.94)
SAS =Ate (5.95)
Similarly for change in 8 in n" interval put A3 = A§ and ® = ®__ , in equ(5.94)
SAS =Ato (5.96)
Let § = The value of § at the end of n" interval. 8
Now,8 =6 _,+A5, .. (5.97) X
The above process of computation is repeated to obtain P, )
AS,, ) and d . The solution of §(t) is thus obtained in discrete form N
over the desired length of time. The normal desired length of time 1= e
is 0.5 sec. n-2  n-1 n t
The continuous form of solution is obtained by drawing a F"J_? 5.14: S_"I"’i"" q[swing
smooth curve through discrete values as shown in fig 5.14. equation by point-by-point method

Incremental fuel costs in rupees per MWh for a plant consisting of Two units are, dCi / dPc1 = 0.20 Pai
+40.00 and dCz / dPc2 = 0.25PG2 + 30.00. Assume that both the units are always operating, and total
load varies from 40MW to 250MW and the maximum and minimum loads on each unit are to be 125 and
20 MW respectively. How will the load be shared between the two units as the system load varies over

the full range.

Given:

dCy
e« U i 1 == U. !
nit dPar 0.20P¢; + 40.00
Unit 2: 9C2
" dPg

= 0.25P¢, + 30.00

Condition for Economic Dispatch

For economic dispatch, the incremental costs must be equal:
0.20P¢1 +40.00 = 0.25P¢, + 30.00
Solving for the Load Sharing
Rearrange the equation to express one of the power outputs in terms of the other:
0.20Pg; — 0.25Pg, = —10.00
Multiply through by 20 to simplify:
4Pg; — 5Pgy = —200

5Pgy = 4Pg1 + 200

4
PGZ == gPG] +40

This equation relates the power outputs of { & wo units.

[10]
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This equation relates the power outputs of the two units.

Load Sharing Over the Full Range

Now, let's calculate how the load is shared between the two units for the minimum and maximum
total system loads.

1. Minimum Load (40 MW):

Let's assume the total load Pp is 40 MW.

Pp = Pgy + Pgo = 4A0MW

Substitute the expression for Pgo:

4
Pgy + EPGI +40) =40
4
Py + gPGl =0

9
7PG1 =0 = PG1 =0

5

From Pgy = gPGI + 40:

Py = 40MW

At the minimum load of 40 MW, all of the load is carried by Unit 2, and Unit 1 does not carry
any load.

2. Maximum Load (250 MW):
Pp = Pg1 + Pgo = 250 MW

Again, substituting the expression for Pgo:
4
Pg, + 5PGI 440 ) = 250

4
Pg + SP(“ =210

9 210 x 5
ng =210 = P = 9 ~ 116.67 MW

Now, Pgs can be calculated:
Pgo = 250 — 116.67 ~ 133.33 MW

At the maximum load of 250 MW, Unit 1 generates approximately 116.67 MW, and Unit 2
generates approximately 133.33 MW.
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