CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test —I, August 2024

Sub:

Database Management System Code:

22MCA21

Answer Key

Marks

OBE

CO | RBT

1)

List and explain the advantages of using the DBMS approach.

A Database Management System (DBMS) is software that allows users to define,
create, and manage databases. It provides a systematic way to organize, store, retrieve,
and manage data efficiently. Here are some key advantages of using the DBMS
approach:

1. Data Independence

Logical Data Independence: The DBMS separates the logical data structure (schema)
from the physical data storage, enabling changes in the logical schema without
affecting the physical storage and vice versa.

Physical Data Independence: Users can change the physical storage structure or
devices without needing to modify the logical data structures.

2. Efficient Data Access

DBMSs use sophisticated algorithms and indexing to retrieve and manipulate large
volumes of data quickly. This results in faster query processing and data retrieval
compared to traditional file-based systems.

3. Data Integrity and Security

Data Integrity: DBMSs enforce data integrity constraints like primary keys, foreign
keys, and unigue constraints, ensuring that the data entered into the database is
accurate and consistent.

Data Security: DBMSs provide robust security mechanisms, such as user
authentication and authorization, ensuring that only authorized users can access or
modify data.

4. Data Redundancy Control

DBMSs minimize data redundancy by normalizing the data, which reduces the chances
of data inconsistency and ensures that data is stored in a single location. This saves
storage space and simplifies data management.

5. Data Consistency

With a DBMS, all users have access to the same, consistent view of the data,
preventing conflicts and inconsistencies that might arise from multiple users updating
data simultaneously.

6. Concurrent Access and Transaction Management

DBMSs support concurrent access to data by multiple users, managing transactions in
a way that ensures data consistency and integrity. They use techniques like locking and
transaction logging to manage concurrency effectively.

7. Backup and Recovery

DBMSs provide automated backup and recovery procedures, ensuring that data can be
restored in case of system failures or data corruption. This feature is critical for

maintaining data availability and business continuity.

10

CO1| L1

8. Data Abstraction

DBMSs offer different levels of data abstraction (physical, logical, and view levels),
allowing users to interact with the data at a level appropriate for their needs without
needing to know the underlying complexities.

9. Data Sharing

DBMSs allow multiple users or applications to access the database simultaneously,
facilitating data sharing across departments or within an organization while
maintaining control over data access.

10. Improved Data Management

With a DBMS, data management becomes more systematic, enabling easier data
maintenance, updates, and reporting. It also simplifies complex data relationships,
making data management more efficient and less error-prone.

11. Enhanced Reporting and Query Capabilities

DBMSs provide powerful query languages like SQL that enable complex querying,
reporting, and data analysis, making it easier to generate insights from data.

12. Scalability

Modern DBMSs are designed to scale horizontally and vertically, accommodating

performance.

growing amounts of data and increasing numbers of users without a significant drop in

OR

2)

Explain about actors on the scene and workers behind the scene.

10

CO1

L1

Actors on the Scene

1. Diwtshase Administrabors

2, Dwizhaze Designers

1 End Users

4. Systemn Analysis and Application Programmers {Software Engineers)

Diatabase A dnmindst rators

In any orgenization where many persons wse the same resources., there is a need for a chief adiminisirator io
oversee and manage these resources. In a database environment, the primary resource is the dainbase itself and the
secondary resource is the DEMS and relsied sofware. Administering these ressurces is the respomsibility of the
datahase administrator (BAL The DEA s responsible for authorizing access to the database, for coordinating
and mendtoning its use, and for scquiring software and hardware rescorces as needed.

Page 5

MODULE -1 NOTES pEms- 22ZMCAZ1
M—

Datahase designers are responsible for identifing the data 1o be stored im the database and for choosing
approprisie struchores. io represend and store this data It & the responsibality of database designers to communicane
with all prospective dsishase users, in order to undersiand their reguirements, and o come up with a design that
meets these requirements.

End L'sers

Emd users are the people whose jobs require acoess 1o the dewbase for guerying, updating, and generating
repcarts; the dainbase primarily exists for their use. There are several categories of end users:

+ Cnzmal end wsers occasionally acoess the datshase. but they may need different information each time. They
use @ sophistiostiesd dmabese query language 1o specify their requests and are typically middle- or high-bevel
manzgers of other oocasional browsers.

+ Naive or parametric end users make up & sizable portkon of database end umers. Their main job funciion
revolves around constantly querying and updating the dainbase, usng sandard types of queries and
updates—called canmed transsctions—ths hove been carefully programmeed and tested.

Bank telbers check account balances and post withdrawals and deposits

+ Sophisticated end uwsers include engineers., schentisiz, business snalysts, and others who thoroughly
familiarize themselves with the facilite of the DEMS o as to implement their applications 1o meet their
coimplex reguiremenis.

+ Stund-alone vsers maintain personal databases by using ready-made program packages that provide easy=tos
use menys or graphics-based merfaces. An example is the user of a @x package that siores a wariety of
personal finencial data for tnx purposes.

Sywtem Analysts and Application Programmers {Software Engineers)

Sysiem analysts determine the requirements of end users, especially naive and parmmetric end
weers, md develop specifications for canned tmnsactions that meet these requirements. Applcation
programmers implement these specifications s programs; then they test, debug, dooument, and madnitzin
these cammed iransactions. Such analysis and programmers (nowadays called software emgimeers) should
bz familiar with the full range of capabilities provided by the DAMS 1o accomplish their tasks.

In addition o those who design, use, and administer a damabase, others are msocisted with the

dezign. development. and operation of the DEME sofheare and cpoem amdronment. These parsons ane
typically not imteresied in the database iiself. We call them the “workers behind the scene® and they

include the following caitegories.

[DBMS systemn designers and implementers are persons who design and inplement the DAMS modules and
interfices &= & software paclkage. A& DEMS & a complex softeare system that consists of many componens
or modules, mcloding modules for implementing, the cainlog. guery langmge, mierface processors, dain
acoess, coourrency control, recovery, and security.

[Too developers include persons who design and implement sools—the software packages thet facliate
database sysiem design and use, and help improve performance. Toods are optional packsges that are ofien
purchased sepamtely. They include packopes for dombese design. performance monitoring. natoral
lamguage or graphical inderfsces, probotyping, simulation, and test data generation .

[Operators and maintenamce personmel are the system adminismation personnel who are responsible for the
actuml nmping mnd maintmance of the hardware and software environment for the daishece system.

3)

Explain SQL data definition and data types in brief and explain
different CREATE and ALTER command.

SQL Data Definition Language (DDL) is a subset of SQL commands used to define

10

COs3

L2

and manage the structure of a database. It includes commands for creating, altering,
and deleting database objects like tables, indexes, and views.

SQL Data Types
Data types define the type of data that can be stored in a table column. Here are some
common SQL data types:

Numeric Types:

INT: Stores integer values.

FLOAT/REAL.: Stores floating-point numbers with varying precision.
DECIMAL/NUMERIC: Stores fixed-point numbers with exact precision, often used
for monetary values.

Character/String Types:

CHARC(size): Fixed-length string, padded with spaces if necessary.
VARCHAR(size): Variable-length string, storing only the characters used.
TEXT: Stores large text data, typically used for long paragraphs of text.
Date and Time Types:

DATE: Stores a date value (YYYY-MM-DD).
TIME: Stores a time value (HH:MI

DATETIME: Stores both date and time (YYYY-MM-DD HH:MI

TIMESTAMP: Stores a timestamp, often used to record the exact time a record was
inserted or updated.
Binary Types:

BINARY (size): Fixed-length binary data.

VARBINARY (size): Variable-length binary data.

BLOB: Stores large binary data like images, audio, or video files.
Boolean Type:

BOOLEAN: Stores true/false values.
Miscellaneous Types:

ENUM: Stores one value from a defined list of values.
SET: Stores multiple values from a defined list.

SQL CREATE and ALTER Commands

1. CREATE Command

The CREATE command is used to create new database objects like tables, indexes,
views, and schemas.

CREATE TABLE table_name (
columnl_name data_type constraints,
column2_name data_type constraints,

CREATE TABLE employees (
id INT PRIMARY KEY,
name VARCHAR(100),
hire_date DATE,
salary DECIMAL(10, 2)

2. ALTER Command

The ALTER command is used to modify the structure of an existing database object,
like adding, dropping, or modifying columns in a table.

ALTER TABLE table_name

ADD column_name data_type;

ALTER TABLE employees

ADD department VARCHAR(50);

ALTER TABLE table_name

MODIFY column_name new_data_type;

ALTER TABLE table_name

DROP COLUMN column_name;

ALTER TABLE old_table_name
RENAME TO new_table_name;

[0 Data Definition: Involves defining the database structure using DDL commands
like CREATE and ALTER.

[0 Data Types: Specify the type of data that can be stored in table columns, ensuring
data integrity and efficient storage.

[0 CREATE Command: Used to create database objects such as tables, views, and
indexes.

[0 ALTER Command: Used to modify the structure of existing database objects,

such as adding or dropping columns or changing data types.

OR

4)

Create the table named ‘employee’ with the attributes: empno,
empname, dept, designation, salary, doj, place. Write SQL
statements for the following:

I. Display all the fields of employee table. ii. Display details of
employee number and their salary.iii. Display average salary of all
employees. iv. Display distinct name of employees in descending
order. v. Count number of employees.

vi. Display the employees whose name contains second and third
letters as ‘um’.

10

CO3

L3

vii. Display salary of employee which is greater than 120000.
viii. Display details of employee whose name is ‘Amit’ and salary
greater than 50000

CREATE TABLE employee (
empno INT PRIMARY KEY,
empname VARCHAR(100),
dept VARCHAR(50),
designation VARCHAR(50),
salary DECIMAL(10, 2),
doj DATE,
place VARCHAR(50)

SELECT * FROM employee;

SELECT empno, salary FROM employee;

SELECT AVG(salary) AS average_salary FROM employee;

SELECT DISTINCT empname FROM employeeORDER BY empname DESC;
SELECT COUNT(*) AS total_employees FROM employee;

SELECT * FROM employee WHERE empname LIKE '_um%",

SELECT * FROM employee WHERE salary > 120000;

SELECT * FROM employeeWHERE empname = 'Amit' AND salary > 50000;

N kDb

5)

List and explain the data types that are allowed for SQL attributes
with example. How char data type differs from varchar?

In SQL, attributes (columns in a table) can have various data types
that define the kind of data they can hold. Here’s a list of commonly
used SQL data types:

1. Numeric Data Types

INT / INTEGER: Used for whole numbers without decimals.

Example: age INT can store values like 25, 0, -12.

FLOAT: Stores approximate numeric values with floating decimal points.
Example: price FLOAT can store values like 9.99, 3.141509.

DECIMAL / NUMERIC: Stores exact numeric values with fixed decimal points,
commonly used for monetary data.

Example: salary DECIMAL(10, 2) can store values like 50000.75, 1234.56.
SMALLINT: Similar to INT but uses less storage and has a smaller range.
Example: year SMALLINT can store values like 2024, 1980.

2. Character String Data Types

CHAR(n): Fixed-length string where n defines the length.

Example: code CHAR(5) will always store 5 characters. If you store 'Al', it will be
stored as 'Al " (padded with spaces).

VARCHAR(n): Variable-length string where n defines the maximum length.
Example: name VARCHAR(50) can store any string up to 50 characters long, like
'John' or 'Maria Garcia'.

TEXT: Stores large strings of text. It’s similar to VARCHAR but without a specific
length limit in many SQL implementations.

Example: description TEXT can store entire paragraphs or documents.

3. Date and Time Data Types
DATE: Stores date values (year, month, day).
Example: birthdate DATE can store values like 2024-08-12.

TIME: Stores time values (hour, minute, second).

10

CO3

L2

Example: start_time TIME can store values like 14:30:00.

DATETIME: Stores both date and time values.

Example: event DATETIME can store values like 2024-08-12 14:30:00.
TIMESTAMP: Similar to DATETIME, often used to store a combination of date and
time, including time zone information.

Example: created_at TIMESTAMP can store values like 2024-08-12 14:30:00.

4. Boolean Data Type

BOOLEAN: Stores TRUE or FALSE values. Some SQL implementations use integers
where 0 represents FALSE and 1 represents TRUE.

Example: is_active BOOLEAN can store values TRUE or FALSE.

5. Binary Data Types

BINARY / VARBINARY: Stores binary data, like images or files. BINARY is fixed-
length, while VARBINARY is variable-length.

Example: file VARBINARY (255) can store binary data up to 255 bytes.

6. Other Data Types

ENUM: Stores a predefined list of values.

Example: status ENUM('active', ‘inactive’, ‘pending’) allows only one of these three
values to be stored.

BLOB: Stores binary large objects, typically used for storing large binary files such as
images or audio files.

Example: image BLOB can store binary data for an image file.

Difference between CHAR and VARCHAR

CHAR:

Fixed-Length: The storage size is always equal to the declared length, regardless of
the actual data length.

Padding with Spaces: If the data is shorter than the declared length, it is padded with
spaces.

Use Case: Ideal for storing data of a fixed size, such as country codes (‘'USA', 'IND").
VARCHAR:

Variable-Length: The storage size is equal to the actual data length, up to the declared
maximum length.

No Padding: No extra space is allocated if the data is shorter than the maximum
length.

Use Case: Best for storing data where the length can vary, such as names, addresses,
or descriptions.

CREATE TABLE Users (

id INT PRIMARY KEY,

username CHAR(10), -- Will store up to 10 characters, always 10 characters long
due to padding

email VARCHAR(255) -- Will store up to 255 characters, but only as much space
as the actual data needs

OR

6)

'You are managing the database of a small retail company, which consists of
several tables that store essential information. The Customers table contains
details such as CustomerID, FirstName, LastName, Email, and Phone. The
Products table includes ProductlID, ProductName, Category, and Price. The
Orders table tracks customer purchases with fields like OrderID, CustomerlID,
and OrderDate. Finally, the OrderDetails table links specific products to each
order, with fields like OrderDetaillD, OrderID, ProductlD, Quantity, and
UnitPrice.
Based on this scenario, answer the following SQL questions:

1. Write an SQL query to list the full names (FirstName and LastName) of all

customers.
2. Write an SQL query to find the total number of products in the Products table.
3. Write an SQL query to retrieve the details (ProductName, Price) of all products in

the 'Electronics’ category.

CREATE TABLE Customers (
CustomerID INT PRIMARY KEY,
FirstName VARCHAR(50),
LastName VARCHAR(50),

Email VARCHAR(100),
Phone VARCHAR(15)

CREATE TABLE Products (
ProductID INT PRIMARY KEY,
ProductName VARCHAR(100),
Category VARCHAR(50),

Price DECIMAL(10, 2)
CREATE TABLE Orders (
OrderID INT PRIMARY KEY,
CustomerID INT,
OrderDate DATE,
FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)

CREATE TABLE OrderDetails (

OrderDetaillD INT PRIMARY KEY,

OrderID INT,

ProductID INT,

10

CO3

L3

Quantity INT,

UnitPrice DECIMAL(10, 2),

FOREIGN KEY (OrderID) REFERENCES Orders(OrderID),
FOREIGN KEY (ProductlD) REFERENCES Products(ProductID)

e SELECT FirstName, LastName FROM Customers;
e SELECT COUNT(*) AS TotalProducts FROM Products;
e SELECT ProductName, Price FROM Products WHERE Category = 'Electronics';

7) |[Explain in detailed about any 5 aggregate functions with an example of each 10 |CO3| L3
1. COUNT()
Purpose: Counts the number of rows that match a specified condition, or the total
number of non-null values in a column.
Example:
SELECT COUNT(*) AS TotalOrders
FROM Orders;
2. SUM()
Purpose: Calculates the total sum of a numeric column.
Example:
SELECT SUM(Quantity) AS TotalltemsSold
FROM OrderDetails;
3. AVG()
Purpose: Computes the average value of a numeric column.
Example
SELECT AVG(Price) AS AveragePrice
FROM Products;
4. MIN()
Purpose: Finds the minimum value in a column.
Example
SELECT MIN(Price) AS LowestPrice
FROM Products;
5. MAX()
Purpose: Finds the maximum value in a column.
Example
SELECT MAX(OrderDate) AS MostRecentOrder
FROM Orders;
OR
8) [Explain with proper example Data Definition Language (DDL) 10 |CO3| L2

Data Definition Language (DDL) is a subset of SQL used to define and manage
database structures, such as creating, altering, and deleting database objects like

they define the structure and organization of the data.

Key DDL Commands:

tables, indexes, and schemas. DDL statements don’t manipulate data directly; instead,

CREATE

ALTER

DROP

TRUNCATE

RENAME

Let’s explore each of these with proper examples:

1. CREATE
Purpose: The CREATE statement is used to create new database objects such as
tables, indexes, or views.
Example: Creating a new table called Employees
CREATE TABLE Employees (
EmployeelD INT PRIMARY KEY,
FirstName VARCHAR(50),
LastName VARCHAR(50),
Email VARCHAR(100),
HireDate DATE

2. ALTER
Purpose: The ALTER statement is used to modify an existing database object, such as
adding, deleting, or modifying columns in a table.

Example: Adding a new column PhoneNumber to the Employees table.
ALTER TABLE Employees
ADD PhoneNumber VARCHAR(15);

ALTER TABLE Employees
MODIFY Email VARCHAR(150);

3. DROP

Purpose: The DROP statement is used to delete an existing database object like a
table, view, or index.

Example: Dropping the Employees table

DROP TABLE Employees;

4. TRUNCATE

Purpose: The TRUNCATE statement is used to delete all rows from a table without
removing the table structure itself.

Example: Truncating the Employees table

TRUNCATE TABLE Employees;

5. RENAME

Purpose: The RENAME statement is used to change the name of an existing database
object.

Example: Renaming the Employees table to Staff

RENAME TABLE Employees TO Staff;

9)

Explain any 5 features of SQL that helps to make the complex queries

[1 Subqueries: Enable dynamic queries where results from one query depend on
another.

[0 Aggregate Functions: Summarize data, often used with GROUP BY.

[J CASE Statements: Implement conditional logic within queries.

[0 Window Functions: Perform calculations across related rows without reducing the

result set.

10

CO3

L2

» Window Functions: Pattern matching is a powerful tool in SQL that helps in
filtering and retrieving data based on specific string patterns, making it useful for
searching and data validation tasks.

With Examples

OR

10)

Explain in detailed about nested query with any 5 examples of your own

SELECT ProductName, Price FROM Products WHERE Price > (SELECT AVG(Price)
FROM Products);

SELECT FirstName, LastName FROM Customers WHERE CustomerID IN (SELECT
CustomerID FROM Orders);

SELECT EmployeelD, FirstName, LastName, Salary FROM Employees el WHERE
Salary > (SELECT AVG(Salary) FROM Employeese2 WHERE el.DepartmentiD
= e2.DepartmentID);

SELECT Category, AvgPrice FROM (SELECT Category, AVG(Price) AS AvgPrice
FROM Products GROUP BY Category) AS AvgPricePerCategory WHERE AvgPrice
> 50;

SELECT CustomerID, COUNT(OrderID) AS OrderCount FROM Orders GROUP BY
CustomerID HAVING COUNT(OrderID) > 3;

10

CO3

L3

