

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test –I, August 2024

Sub: Database Management System Code: 22MCA21

Answer Key Marks
OBE

CO RBT

1) List and explain the advantages of using the DBMS approach.
A Database Management System (DBMS) is software that allows users to define,

create, and manage databases. It provides a systematic way to organize, store, retrieve,

and manage data efficiently. Here are some key advantages of using the DBMS

approach:

1. Data Independence

Logical Data Independence: The DBMS separates the logical data structure (schema)

from the physical data storage, enabling changes in the logical schema without

affecting the physical storage and vice versa.

Physical Data Independence: Users can change the physical storage structure or

devices without needing to modify the logical data structures.

2. Efficient Data Access

DBMSs use sophisticated algorithms and indexing to retrieve and manipulate large

volumes of data quickly. This results in faster query processing and data retrieval

compared to traditional file-based systems.

3. Data Integrity and Security

Data Integrity: DBMSs enforce data integrity constraints like primary keys, foreign

keys, and unique constraints, ensuring that the data entered into the database is

accurate and consistent.

Data Security: DBMSs provide robust security mechanisms, such as user

authentication and authorization, ensuring that only authorized users can access or

modify data.

4. Data Redundancy Control

DBMSs minimize data redundancy by normalizing the data, which reduces the chances

of data inconsistency and ensures that data is stored in a single location. This saves

storage space and simplifies data management.

5. Data Consistency

With a DBMS, all users have access to the same, consistent view of the data,

preventing conflicts and inconsistencies that might arise from multiple users updating

data simultaneously.

6. Concurrent Access and Transaction Management

DBMSs support concurrent access to data by multiple users, managing transactions in

a way that ensures data consistency and integrity. They use techniques like locking and

transaction logging to manage concurrency effectively.

7. Backup and Recovery

DBMSs provide automated backup and recovery procedures, ensuring that data can be

restored in case of system failures or data corruption. This feature is critical for

maintaining data availability and business continuity.

10

CO1 L1

8. Data Abstraction

DBMSs offer different levels of data abstraction (physical, logical, and view levels),

allowing users to interact with the data at a level appropriate for their needs without

needing to know the underlying complexities.

9. Data Sharing

DBMSs allow multiple users or applications to access the database simultaneously,

facilitating data sharing across departments or within an organization while

maintaining control over data access.

10. Improved Data Management

With a DBMS, data management becomes more systematic, enabling easier data

maintenance, updates, and reporting. It also simplifies complex data relationships,

making data management more efficient and less error-prone.

11. Enhanced Reporting and Query Capabilities

DBMSs provide powerful query languages like SQL that enable complex querying,

reporting, and data analysis, making it easier to generate insights from data.

12. Scalability

Modern DBMSs are designed to scale horizontally and vertically, accommodating

growing amounts of data and increasing numbers of users without a significant drop in

performance.

OR

2) Explain about actors on the scene and workers behind the scene.

10 CO1 L1

3) Explain SQL data definition and data types in brief and explain

different CREATE and ALTER command.

SQL Data Definition Language (DDL) is a subset of SQL commands used to define

10 CO3 L2

and manage the structure of a database. It includes commands for creating, altering,

and deleting database objects like tables, indexes, and views.

SQL Data Types

Data types define the type of data that can be stored in a table column. Here are some

common SQL data types:

Numeric Types:

INT: Stores integer values.

FLOAT/REAL: Stores floating-point numbers with varying precision.

DECIMAL/NUMERIC: Stores fixed-point numbers with exact precision, often used

for monetary values.

Character/String Types:

CHAR(size): Fixed-length string, padded with spaces if necessary.

VARCHAR(size): Variable-length string, storing only the characters used.

TEXT: Stores large text data, typically used for long paragraphs of text.

Date and Time Types:

DATE: Stores a date value (YYYY-MM-DD).

TIME: Stores a time value (HH:MI

).

DATETIME: Stores both date and time (YYYY-MM-DD HH:MI

).

TIMESTAMP: Stores a timestamp, often used to record the exact time a record was

inserted or updated.

Binary Types:

BINARY(size): Fixed-length binary data.

VARBINARY(size): Variable-length binary data.

BLOB: Stores large binary data like images, audio, or video files.

Boolean Type:

BOOLEAN: Stores true/false values.

Miscellaneous Types:

ENUM: Stores one value from a defined list of values.

SET: Stores multiple values from a defined list.

SQL CREATE and ALTER Commands

1. CREATE Command

The CREATE command is used to create new database objects like tables, indexes,

views, and schemas.

CREATE TABLE table_name (

 column1_name data_type constraints,

 column2_name data_type constraints,

 ...

);

CREATE TABLE employees (

 id INT PRIMARY KEY,

 name VARCHAR(100),

 hire_date DATE,

 salary DECIMAL(10, 2)

);

2. ALTER Command

The ALTER command is used to modify the structure of an existing database object,

like adding, dropping, or modifying columns in a table.

ALTER TABLE table_name

ADD column_name data_type;

ALTER TABLE employees

ADD department VARCHAR(50);

ALTER TABLE table_name

MODIFY column_name new_data_type;

ALTER TABLE table_name

DROP COLUMN column_name;

ALTER TABLE old_table_name

RENAME TO new_table_name;

 Data Definition: Involves defining the database structure using DDL commands

like CREATE and ALTER.

 Data Types: Specify the type of data that can be stored in table columns, ensuring

data integrity and efficient storage.

 CREATE Command: Used to create database objects such as tables, views, and

indexes.

 ALTER Command: Used to modify the structure of existing database objects,

such as adding or dropping columns or changing data types.

OR

4) Create the table named ‘employee’ with the attributes: empno,

empname, dept, designation, salary, doj, place. Write SQL

statements for the following:

i. Display all the fields of employee table. ii. Display details of

employee number and their salary.iii. Display average salary of all

employees. iv. Display distinct name of employees in descending

order. v. Count number of employees.

vi. Display the employees whose name contains second and third

letters as ‘um’.

10 CO3 L3

vii. Display salary of employee which is greater than 120000.

viii. Display details of employee whose name is ‘Amit’ and salary

greater than 50000

CREATE TABLE employee (

 empno INT PRIMARY KEY,

 empname VARCHAR(100),

 dept VARCHAR(50),

 designation VARCHAR(50),

 salary DECIMAL(10, 2),

 doj DATE,

 place VARCHAR(50)

);
1. SELECT * FROM employee;

2. SELECT empno, salary FROM employee;

3. SELECT AVG(salary) AS average_salary FROM employee;

4. SELECT DISTINCT empname FROM employeeORDER BY empname DESC;

5. SELECT COUNT(*) AS total_employees FROM employee;

6. SELECT * FROM employee WHERE empname LIKE '_um%';

7. SELECT * FROM employee WHERE salary > 120000;

8. SELECT * FROM employeeWHERE empname = 'Amit' AND salary > 50000;

5) List and explain the data types that are allowed for SQL attributes

with example. How char data type differs from varchar?

In SQL, attributes (columns in a table) can have various data types

that define the kind of data they can hold. Here’s a list of commonly

used SQL data types:

1. Numeric Data Types

INT / INTEGER: Used for whole numbers without decimals.

Example: age INT can store values like 25, 0, -12.

FLOAT: Stores approximate numeric values with floating decimal points.

Example: price FLOAT can store values like 9.99, 3.14159.

DECIMAL / NUMERIC: Stores exact numeric values with fixed decimal points,

commonly used for monetary data.

Example: salary DECIMAL(10, 2) can store values like 50000.75, 1234.56.

SMALLINT: Similar to INT but uses less storage and has a smaller range.

Example: year SMALLINT can store values like 2024, 1980.

2. Character String Data Types

CHAR(n): Fixed-length string where n defines the length.

Example: code CHAR(5) will always store 5 characters. If you store 'A1', it will be

stored as 'A1 ' (padded with spaces).

VARCHAR(n): Variable-length string where n defines the maximum length.

Example: name VARCHAR(50) can store any string up to 50 characters long, like

'John' or 'Maria Garcia'.

TEXT: Stores large strings of text. It’s similar to VARCHAR but without a specific

length limit in many SQL implementations.

Example: description TEXT can store entire paragraphs or documents.

3. Date and Time Data Types

DATE: Stores date values (year, month, day).

Example: birthdate DATE can store values like 2024-08-12.

TIME: Stores time values (hour, minute, second).

10 CO3 L2

Example: start_time TIME can store values like 14:30:00.

DATETIME: Stores both date and time values.

Example: event DATETIME can store values like 2024-08-12 14:30:00.

TIMESTAMP: Similar to DATETIME, often used to store a combination of date and

time, including time zone information.

Example: created_at TIMESTAMP can store values like 2024-08-12 14:30:00.

4. Boolean Data Type

BOOLEAN: Stores TRUE or FALSE values. Some SQL implementations use integers

where 0 represents FALSE and 1 represents TRUE.

Example: is_active BOOLEAN can store values TRUE or FALSE.

5. Binary Data Types

BINARY / VARBINARY: Stores binary data, like images or files. BINARY is fixed-

length, while VARBINARY is variable-length.

Example: file VARBINARY(255) can store binary data up to 255 bytes.

6. Other Data Types

ENUM: Stores a predefined list of values.

Example: status ENUM('active', 'inactive', 'pending') allows only one of these three

values to be stored.

BLOB: Stores binary large objects, typically used for storing large binary files such as

images or audio files.

Example: image BLOB can store binary data for an image file.

Difference between CHAR and VARCHAR

CHAR:

Fixed-Length: The storage size is always equal to the declared length, regardless of

the actual data length.

Padding with Spaces: If the data is shorter than the declared length, it is padded with

spaces.

Use Case: Ideal for storing data of a fixed size, such as country codes ('USA', 'IND').

VARCHAR:

Variable-Length: The storage size is equal to the actual data length, up to the declared

maximum length.

No Padding: No extra space is allocated if the data is shorter than the maximum

length.

Use Case: Best for storing data where the length can vary, such as names, addresses,

or descriptions.

CREATE TABLE Users (

 id INT PRIMARY KEY,

 username CHAR(10), -- Will store up to 10 characters, always 10 characters long

due to padding

 email VARCHAR(255) -- Will store up to 255 characters, but only as much space

as the actual data needs

);

OR

6) You are managing the database of a small retail company, which consists of

several tables that store essential information. The Customers table contains

details such as CustomerID, FirstName, LastName, Email, and Phone. The

Products table includes ProductID, ProductName, Category, and Price. The

Orders table tracks customer purchases with fields like OrderID, CustomerID,

and OrderDate. Finally, the OrderDetails table links specific products to each

order, with fields like OrderDetailID, OrderID, ProductID, Quantity, and

UnitPrice.

Based on this scenario, answer the following SQL questions:

1. Write an SQL query to list the full names (FirstName and LastName) of all

customers.

2. Write an SQL query to find the total number of products in the Products table.

3. Write an SQL query to retrieve the details (ProductName, Price) of all products in

the 'Electronics' category.

CREATE TABLE Customers (

 CustomerID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 Email VARCHAR(100),

 Phone VARCHAR(15)

);

CREATE TABLE Products (

 ProductID INT PRIMARY KEY,

 ProductName VARCHAR(100),

 Category VARCHAR(50),

 Price DECIMAL(10, 2)

);

CREATE TABLE Orders (

 OrderID INT PRIMARY KEY,

 CustomerID INT,

 OrderDate DATE,

 FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)

);

CREATE TABLE OrderDetails (

 OrderDetailID INT PRIMARY KEY,

 OrderID INT,

 ProductID INT,

10 CO3 L3

 Quantity INT,

 UnitPrice DECIMAL(10, 2),

 FOREIGN KEY (OrderID) REFERENCES Orders(OrderID),

 FOREIGN KEY (ProductID) REFERENCES Products(ProductID)

);

• SELECT FirstName, LastName FROM Customers;

• SELECT COUNT(*) AS TotalProducts FROM Products;

• SELECT ProductName, Price FROM Products WHERE Category = 'Electronics';

7) Explain in detailed about any 5 aggregate functions with an example of each

1. COUNT()

Purpose: Counts the number of rows that match a specified condition, or the total

number of non-null values in a column.

Example:

SELECT COUNT(*) AS TotalOrders

FROM Orders;

2. SUM()

Purpose: Calculates the total sum of a numeric column.

Example:

SELECT SUM(Quantity) AS TotalItemsSold

FROM OrderDetails;

3. AVG()

Purpose: Computes the average value of a numeric column.

Example

SELECT AVG(Price) AS AveragePrice

FROM Products;

4. MIN()

Purpose: Finds the minimum value in a column.

Example

SELECT MIN(Price) AS LowestPrice

FROM Products;

5. MAX()

Purpose: Finds the maximum value in a column.

Example

SELECT MAX(OrderDate) AS MostRecentOrder

FROM Orders;

10 CO3 L3

OR

8) Explain with proper example Data Definition Language (DDL)

Data Definition Language (DDL) is a subset of SQL used to define and manage

database structures, such as creating, altering, and deleting database objects like

tables, indexes, and schemas. DDL statements don’t manipulate data directly; instead,

they define the structure and organization of the data.

Key DDL Commands:

10 CO3 L2

CREATE

ALTER

DROP

TRUNCATE

RENAME

Let’s explore each of these with proper examples:

1. CREATE

Purpose: The CREATE statement is used to create new database objects such as

tables, indexes, or views.

Example: Creating a new table called Employees

CREATE TABLE Employees (

 EmployeeID INT PRIMARY KEY,

 FirstName VARCHAR(50),

 LastName VARCHAR(50),

 Email VARCHAR(100),

 HireDate DATE

);

2. ALTER

Purpose: The ALTER statement is used to modify an existing database object, such as

adding, deleting, or modifying columns in a table.

Example: Adding a new column PhoneNumber to the Employees table.

ALTER TABLE Employees

ADD PhoneNumber VARCHAR(15);

ALTER TABLE Employees

MODIFY Email VARCHAR(150);

3. DROP

Purpose: The DROP statement is used to delete an existing database object like a

table, view, or index.

Example: Dropping the Employees table

DROP TABLE Employees;

4. TRUNCATE

Purpose: The TRUNCATE statement is used to delete all rows from a table without

removing the table structure itself.

Example: Truncating the Employees table

TRUNCATE TABLE Employees;

5. RENAME

Purpose: The RENAME statement is used to change the name of an existing database

object.

Example: Renaming the Employees table to Staff

RENAME TABLE Employees TO Staff;

9) Explain any 5 features of SQL that helps to make the complex queries

 Subqueries: Enable dynamic queries where results from one query depend on

another.

 Aggregate Functions: Summarize data, often used with GROUP BY.

 CASE Statements: Implement conditional logic within queries.

 Window Functions: Perform calculations across related rows without reducing the

result set.

10 CO3 L2

• Window Functions: Pattern matching is a powerful tool in SQL that helps in

filtering and retrieving data based on specific string patterns, making it useful for

searching and data validation tasks.

With Examples

OR

10) Explain in detailed about nested query with any 5 examples of your own

• SELECT ProductName, Price FROM Products WHERE Price > (SELECT AVG(Price)

FROM Products);

• SELECT FirstName, LastName FROM Customers WHERE CustomerID IN (SELECT

CustomerID FROM Orders);

• SELECT EmployeeID, FirstName, LastName, Salary FROM Employees e1 WHERE

Salary > (SELECT AVG(Salary) FROM Employees e2 WHERE e1.DepartmentID

= e2.DepartmentID);

• SELECT Category, AvgPrice FROM (SELECT Category, AVG(Price) AS AvgPrice

FROM Products GROUP BY Category) AS AvgPricePerCategory WHERE AvgPrice

> 50;

• SELECT CustomerID, COUNT(OrderID) AS OrderCount FROM Orders GROUP BY

CustomerID HAVING COUNT(OrderID) > 3;

10 CO3 L3

