USN					

				Interna	al Assessment	Test	1 - June 202	.4	1		. =			
Sı	ıb:	Database 3	Manageme	nt Systems			Sub Code:	BCS403	Bra	nch:	AIM AIM	IL/CS IL	E-	
Da	te:	04/06/24	06/24Duration:90 minutesMax Marks:50Sem/Sec:		IV		0)BE					
				SCH	EME AND S	OLUI	FIONS			MAF	RKS	CO R		
1	a	file system? Answer:- Explanation Self-descri Insulation	of 4 points- bing nature o between prog multiple view data and mul	4X2=8M of a database s grams and data ws of the data tiuser transact	a, and data abstition processing	raction		from traditi	onal	[1(D]	1	L1	
2	а	your own attr Answer: - Selection of 4	ibutes and re 4 entities rela h proper not	lationships ated to Hospi ration of entit	ta base conside tal-2M ies, attributes,	Ū				[6	j]	1	L3	
	b	Which one i Answer: Difference I Which one Achieving independence	s harder to a between Lo g is harder to logical dat ce. Changes	chieve? Why gical and Ph achieve? W a independe at the phys	ysical data ir	ndepe ler co not	ndence-2M ompared to need to be	physical reflected a	data t the		-]	1	L2	
3	a	Answer:- Data model I A data mode database—pro Different cat 1.High-level 2.Low-level o	Definition -2 el—a collecti ovides the ne egories or conceptus or physical d	M on of concep cessary means al data model lata models		used s abstr	to describe t action		of a	[6	5]	1	L2	

Internal Assessment Test 1 – June 2024

b	 Explain the importance of Cardinality ratio and participation Constraints in a relational model. Answer- Cardinality Ratio- Definition +Example –2M The cardinality ratio for a binary relationship specifies the maximum number of relationship instances that an entity can participate in. Participation Constraint- Definition+Example—2M The participation constraint specifies whether the existence of an entity depends on its being related to another entity via the relationship type This constraint specifies the minimum number of relationship instances that each entity 	[4]	1	L2
	can participate in and is sometimes called the minimum cardinality constraint There are two types of participation constraints—total and partial			
4 a	Briefly describe the steps involved in ER- to relational mapping algorithm. Answer: Mention the steps-2M Each step +Explanation -8M Step 1: For each regular (strong) entity type E in the ER schema, create a relation R that includes all the simple attributes of E. Step 2: For each weak entity type W in the ER schema with owner entity type E, create a relation R, and includeall simple attributes (or simple components of composite attributes) of W as attributes. In addition, include as foreign key attributes of R the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s). Step 3: For each binary 1:1 relationship type R in the ER schema, identify the relations, say S, and include the primary key of T as a foreign key in S. Include all the simple attributes of R as attributes of S. Step 4: For each regular binary 1:N relationship type R identify the relation (N) relation S. the primary key of T as a foreign key of S. Simple attributes of R map to attributes of S. Step 5: For each binary M:N relationship type R, create a relation S. Include the primary keys of participant relations as foreign keys in S. Their combination will be the primary keys for S. Simple attributes of S. Step 6: For each multi-valued attribute A, create a new relation R. This relation will include an attribute corresponding to A, plus the primary key K of the parent relation (entity type or relationship type) as a foreign key in R. The primary key of R is the combination of A and K. Step 7: For each n-ary relationship type R, where n>2, create a new relation S to represent R. Include the primary keys of the relations participating in R as foreign keys in S. Simple attributes of R map to attributes of S.	[10]	2	L2

		The primary key of S is a combination of all the foreign keys that reference the participants			
		that have cardinality constraint > 1 . For a recursive relationship, we will need a new relation.			
		Explain the different schema-based constraints.			
		Answer:-			
		List the constraints-1M			
	а	Explanation of each type -1X5=5M	[6]	2	L2
		The schema-based constraints include domain constraints, key constraints, constraints on			
		NULLs, entity integrity constraints, and referential integrity constraints.			
		Consider the relations.			
		EMPLOYEE(emp_id,name)			
		ASSIGNED_TO(projectno,emp_id)			
5		PROJECT(projectno,project_name)			
		Express the following queries in Relational Algebra.			
		i)Get details of employees working on both P354 and P345 project numbers.			
	b	ii)Find the employee number of employee who work on project P678	[4]	2	L3
		Answers: Each query 2M each			
		i) Π emp_id,name(∂ project_no.=P354 (EMPLOYEE*ASSIGNED_TO)) \cap Π			
		emp_id,name (ôproject_no.=P345 (EMPLOYEE*ASSIGNED_TO))			
		ii) Π emp_id(∂project_no.=P678 (EMPLOYEE*ASSIGNED_TO))			
		List the various operations of relational algebra and explain the purpose of each with			
		examples.			
6	а	Answer:-	[10]	2	L2
		Each operator=1X10=10M with examples.			
L	1				

Operation	Purpose	Notation
SELECT	Selects all tuples that satisfy the selection condition from a relation R .	$\sigma_{}(R)$
PROJECT	Produces a new relation with only some of the attributes of <i>R</i> , and removes duplicate tuples.	$\pi_{\text{}}(R)$
THETA JOIN	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	$R_1 \bowtie_{<\text{join condition}>} R_2$
EQUUOIN	Produces all the combinations of tuples from R_1 and R_2 that satisfy a join condition with only equality comparisons.	$R_1 \bowtie_{<\text{join condition>}} R_2,$ OR $R_1 \bowtie_{(<\text{join attributes 1>}),}$ (<ioin 2="" attributes="">) R_2</ioin>
NATURAL JOIN	Same as EQUUOIN except that the join attributes of R_2 are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$R_1 *_{} R_2,$ OR $R_1 *_{),$ $() R_2$ OR $R_1 * R_2$
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$
INTERSECTION	Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$
SET DIFFERENCE	Produces a relation that includes all the tuples in R_1 that are not in R_2 ; R_1 and R_2 must be union compatible.	$R_1 - R_2$
CARTESIAN PRODUCT	Produces a relation that has the attributes of R_1 and R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2 .	$R_1 \times R_2$
DIVISION	Produces a relation $R(X)$ that includes all tuples $t[X]$	$R_1(Z) + R_2(\gamma)$

CI

CCI

All the Best-----

HoD