

CMR

INSTITUTE OF

TECHNOLOGY

USN

Sub: Internal Assessment Test II July 2024 Optimization Techniques Code: BCS405C

Date: 08/07/2024 Duration: 90 mins Max Marks: 50 Sem: IV Branch: CSDS/CSML

Answer any five of the following. Marks
OBE

CO RB

T

1 Define a)convex set b)S.T a non-negative weighted sum of convex functions is convex. 2+8

CO3 L1,L2

2 Explain Stochastic Gradient Descent.

S.T negative entropy for xxxf 2log)( is convex for x>0 for 2 points x = 2 & x = 4.

5+5

CO3,4 L2,L3

3 Minimise)5.1()( xxxf in [0,1] within the interval of uncertainty 0.25 using Fibonacci

search method.

10

CO3 L3

4


































 


1

1
,

110

011

3

2

1

B

x

x

x

XA
 Solve by optimization using Gradient descent.

10

CO3

L3

5 Define convex function. Explain optimization using Gradient Descent. 2+8

CO3
L2

6 Explain quadratic cost. Find the max of)5()(xxxf   in [0,20] with 1.0 using three

point search method.

5+5 CO3

L2,L3

CMR

INSTITUTE OF

TECHNOLOGY

USN

Sub: Internal Assessment Test II July 2024 Optimization Techniques Code: BCS405C

Date: 08/07/2024 Duration: 90 mins Max Marks: 50 Sem: IV Branch: CSDS/CSML

Answer any five of the following. Marks
OBE

CO RBT

1 Define a)convex set b)S.T a non-negative weighted sum of convex functions is convex. 2+8

CO3 L1,L2

2 Explain Stochastic Gradient Descent.

S.T negative entropy for xxxf 2log)( is convex for x>0 for 2 points x = 2 & x = 4.

5+5

CO3,4 L2,L3

3 Minimise)5.1()( xxxf in [0,1] within the interval of uncertainty 0.25 using Fibonacci

search method.

10

CO3 L3

4


































 


1

1
,

110

011

3

2

1

B

x

x

x

XA
 Solve by optimization using Gradient descent.

10

CO3

L3

5 Define convex function. Explain optimization using Gradient Descent. 2+8

CO3 L2

6 Explain quadratic cost. Find the max of)5()(xxxf   in [0,20] with 1.0 using three

point search method.

5+5 CO3
L2,L3

7.1 Optimization Using Gradient Descent 227

Figure 7.2 Example
objective function.
Negative gradients
are indicated by
arrows, and the
global minimum is
indicated by the
dashed blue line.

−6 −5 −4 −3 −2 −1 0 1 2
Value of parameter

−60

−40

−20

0

20

40

60

O
b

je
ct

iv
e

x4 + 7x3 + 5x2 − 17x+ 3

right, but not how far (this is called the step-size). Furthermore, if we According to the
Abel–Ruffini
theorem, there is in
general no algebraic
solution for
polynomials of
degree 5 or more
(Abel, 1826).

had started at the right side (e.g., x0 = 0) the negative gradient would
have led us to the wrong minimum. Figure 7.2 illustrates the fact that for
x > −1, the negative gradient points toward the minimum on the right of
the figure, which has a larger objective value.

In Section 7.3, we will learn about a class of functions, called convex
functions, that do not exhibit this tricky dependency on the starting point
of the optimization algorithm. For convex functions, all local minimums
are global minimum. It turns out that many machine learning objective For convex functions

all local minima are
global minimum.

functions are designed such that they are convex, and we will see an ex-
ample in Chapter 12.

The discussion in this chapter so far was about a one-dimensional func-
tion, where we are able to visualize the ideas of gradients, descent direc-
tions, and optimal values. In the rest of this chapter we develop the same
ideas in high dimensions. Unfortunately, we can only visualize the con-
cepts in one dimension, but some concepts do not generalize directly to
higher dimensions, therefore some care needs to be taken when reading.

7.1 Optimization Using Gradient Descent

We now consider the problem of solving for the minimum of a real-valued
function

min
x
f(x) , (7.4)

©2024 M. P. Deisenroth, A. A. Faisal, C. S. Ong. Published by Cambridge University Press (2020).

228 Continuous Optimization

where f : Rd → R is an objective function that captures the machine
learning problem at hand. We assume that our function f is differentiable,
and we are unable to analytically find a solution in closed form.

Gradient descent is a first-order optimization algorithm. To find a local
minimum of a function using gradient descent, one takes steps propor-
tional to the negative of the gradient of the function at the current point.
Recall from Section 5.1 that the gradient points in the direction of theWe use the

convention of row
vectors for
gradients.

steepest ascent. Another useful intuition is to consider the set of lines
where the function is at a certain value (f(x) = c for some value c ∈ R),
which are known as the contour lines. The gradient points in a direction
that is orthogonal to the contour lines of the function we wish to optimize.

Let us consider multivariate functions. Imagine a surface (described by
the function f(x)) with a ball starting at a particular location x0. When
the ball is released, it will move downhill in the direction of steepest de-
scent. Gradient descent exploits the fact that f(x0) decreases fastest if one
moves from x0 in the direction of the negative gradient −((∇f)(x0))

⊤ of
f at x0. We assume in this book that the functions are differentiable, and
refer the reader to more general settings in Section 7.4. Then, if

x1 = x0 − γ((∇f)(x0))
⊤ (7.5)

for a small step-size γ ⩾ 0, then f(x1) ⩽ f(x0). Note that we use the
transpose for the gradient since otherwise the dimensions will not work
out.

This observation allows us to define a simple gradient descent algo-
rithm: If we want to find a local optimum f(x∗) of a function f : Rn →
R, x 7→ f(x), we start with an initial guess x0 of the parameters we wish
to optimize and then iterate according to

xi+1 = xi − γi((∇f)(xi))
⊤ . (7.6)

For suitable step-size γi, the sequence f(x0) ⩾ f(x1) ⩾ . . . converges to
a local minimum.

Example 7.1
Consider a quadratic function in two dimensions

f

([
x1

x2

])
=

1

2

[
x1

x2

]⊤ [
2 1
1 20

] [
x1

x2

]
−
[
5
3

]⊤ [
x1

x2

]
(7.7)

with gradient

∇f
([
x1

x2

])
=

[
x1

x2

]⊤ [
2 1
1 20

]
−
[
5
3

]⊤
. (7.8)

Starting at the initial location x0 = [−3,−1]⊤, we iteratively apply (7.6)
to obtain a sequence of estimates that converge to the minimum value

Draft (2024-01-15) of “Mathematics for Machine Learning”. Feedback: https://mml-book.com.

https://mml-book.com

7.1 Optimization Using Gradient Descent 229

Figure 7.3 Gradient
descent on a
two-dimensional
quadratic surface
(shown as a
heatmap). See
Example 7.1 for a
description.

−4 −2 0 2 4
x1

−2

−1

0

1

2

x
2

0.0

10.0

20.0
30.0

40.0

40.0

50.0

50.0

60.0
70.080.0 −15

0

15

30

45

60

75

90

(illustrated in Figure 7.3). We can see (both from the figure and by plug-
ging x0 into (7.8) with γ = 0.085) that the negative gradient at x0 points
north and east, leading to x1 = [−1.98, 1.21]⊤. Repeating that argument
gives us x2 = [−1.32,−0.42]⊤, and so on.

Remark. Gradient descent can be relatively slow close to the minimum:
Its asymptotic rate of convergence is inferior to many other methods. Us-
ing the ball rolling down the hill analogy, when the surface is a long, thin
valley, the problem is poorly conditioned (Trefethen and Bau III, 1997).
For poorly conditioned convex problems, gradient descent increasingly
“zigzags” as the gradients point nearly orthogonally to the shortest di-
rection to a minimum point; see Figure 7.3. ♢

7.1.1 Step-size

As mentioned earlier, choosing a good step-size is important in gradient
descent. If the step-size is too small, gradient descent can be slow. If the The step-size is also

called the learning
rate.

step-size is chosen too large, gradient descent can overshoot, fail to con-
verge, or even diverge. We will discuss the use of momentum in the next
section. It is a method that smoothes out erratic behavior of gradient up-
dates and dampens oscillations.

Adaptive gradient methods rescale the step-size at each iteration, de-
pending on local properties of the function. There are two simple heuris-
tics (Toussaint, 2012):

When the function value increases after a gradient step, the step-size
was too large. Undo the step and decrease the step-size.
When the function value decreases the step could have been larger. Try
to increase the step-size.

©2024 M. P. Deisenroth, A. A. Faisal, C. S. Ong. Published by Cambridge University Press (2020).

7.1 Optimization Using Gradient Descent 231

a moving average. The momentum-based method remembers the update
∆xi at each iteration i and determines the next update as a linear combi-
nation of the current and previous gradients

xi+1 = xi − γi((∇f)(xi))
⊤ + α∆xi (7.11)

∆xi = xi − xi−1 = α∆xi−1 − γi−1((∇f)(xi−1))
⊤ , (7.12)

where α ∈ [0, 1]. Sometimes we will only know the gradient approxi-
mately. In such cases, the momentum term is useful since it averages out
different noisy estimates of the gradient. One particularly useful way to
obtain an approximate gradient is by using a stochastic approximation,
which we discuss next.

7.1.3 Stochastic Gradient Descent

Computing the gradient can be very time consuming. However, often it is
possible to find a “cheap” approximation of the gradient. Approximating
the gradient is still useful as long as it points in roughly the same direction
as the true gradient. stochastic gradient

descentStochastic gradient descent (often shortened as SGD) is a stochastic ap-
proximation of the gradient descent method for minimizing an objective
function that is written as a sum of differentiable functions. The word
stochastic here refers to the fact that we acknowledge that we do not
know the gradient precisely, but instead only know a noisy approxima-
tion to it. By constraining the probability distribution of the approximate
gradients, we can still theoretically guarantee that SGD will converge.

In machine learning, given n = 1, . . . , N data points, we often consider
objective functions that are the sum of the losses Ln incurred by each
example n. In mathematical notation, we have the form

L(θ) =
N∑

n=1

Ln(θ) , (7.13)

where θ is the vector of parameters of interest, i.e., we want to find θ that
minimizes L. An example from regression (Chapter 9) is the negative log-
likelihood, which is expressed as a sum over log-likelihoods of individual
examples so that

L(θ) = −
N∑

n=1

log p(yn|xn,θ) , (7.14)

where xn ∈ RD are the training inputs, yn are the training targets, and θ
are the parameters of the regression model.

Standard gradient descent, as introduced previously, is a “batch” opti-
mization method, i.e., optimization is performed using the full training set

©2024 M. P. Deisenroth, A. A. Faisal, C. S. Ong. Published by Cambridge University Press (2020).

232 Continuous Optimization

by updating the vector of parameters according to

θi+1 = θi − γi(∇L(θi))
⊤ = θi − γi

N∑
n=1

(∇Ln(θi))
⊤ (7.15)

for a suitable step-size parameter γi. Evaluating the sum gradient may re-
quire expensive evaluations of the gradients from all individual functions
Ln. When the training set is enormous and/or no simple formulas exist,
evaluating the sums of gradients becomes very expensive.

Consider the term
∑N

n=1(∇Ln(θi)) in (7.15). We can reduce the amount
of computation by taking a sum over a smaller set of Ln. In contrast to
batch gradient descent, which uses all Ln for n = 1, . . . , N , we randomly
choose a subset of Ln for mini-batch gradient descent. In the extreme
case, we randomly select only a single Ln to estimate the gradient. The
key insight about why taking a subset of data is sensible is to realize that
for gradient descent to converge, we only require that the gradient is an
unbiased estimate of the true gradient. In fact the term

∑N
n=1(∇Ln(θi))

in (7.15) is an empirical estimate of the expected value (Section 6.4.1) of
the gradient. Therefore, any other unbiased empirical estimate of the ex-
pected value, for example using any subsample of the data, would suffice
for convergence of gradient descent.

Remark. When the learning rate decreases at an appropriate rate, and sub-
ject to relatively mild assumptions, stochastic gradient descent converges
almost surely to local minimum (Bottou, 1998). ♢

Why should one consider using an approximate gradient? A major rea-
son is practical implementation constraints, such as the size of central
processing unit (CPU)/graphics processing unit (GPU) memory or limits
on computational time. We can think of the size of the subset used to esti-
mate the gradient in the same way that we thought of the size of a sample
when estimating empirical means (Section 6.4.1). Large mini-batch sizes
will provide accurate estimates of the gradient, reducing the variance in
the parameter update. Furthermore, large mini-batches take advantage of
highly optimized matrix operations in vectorized implementations of the
cost and gradient. The reduction in variance leads to more stable conver-
gence, but each gradient calculation will be more expensive.

In contrast, small mini-batches are quick to estimate. If we keep the
mini-batch size small, the noise in our gradient estimate will allow us to
get out of some bad local optima, which we may otherwise get stuck in.
In machine learning, optimization methods are used for training by min-
imizing an objective function on the training data, but the overall goal
is to improve generalization performance (Chapter 8). Since the goal in
machine learning does not necessarily need a precise estimate of the min-
imum of the objective function, approximate gradients using mini-batch
approaches have been widely used. Stochastic gradient descent is very
effective in large-scale machine learning problems (Bottou et al., 2018),

Draft (2024-01-15) of “Mathematics for Machine Learning”. Feedback: https://mml-book.com.

https://mml-book.com

7.2 Constrained Optimization and Lagrange Multipliers 233

Figure 7.4
Illustration of
constrained
optimization. The
unconstrained
problem (indicated
by the contour
lines) has a
minimum on the
right side (indicated
by the circle). The
box constraints
(−1 ⩽ x ⩽ 1 and
−1 ⩽ y ⩽ 1) require
that the optimal
solution is within
the box, resulting in
an optimal value
indicated by the
star.

−3 −2 −1 0 1 2 3
x1

−3

−2

−1

0

1

2

3
x

2

such as training deep neural networks on millions of images (Dean et al.,
2012), topic models (Hoffman et al., 2013), reinforcement learning (Mnih
et al., 2015), or training of large-scale Gaussian process models (Hensman
et al., 2013; Gal et al., 2014).

7.2 Constrained Optimization and Lagrange Multipliers

In the previous section, we considered the problem of solving for the min-
imum of a function

min
x
f(x) , (7.16)

where f : RD → R.
In this section, we have additional constraints. That is, for real-valued

functions gi : RD → R for i = 1, . . . ,m, we consider the constrained
optimization problem (see Figure 7.4 for an illustration)

min
x

f(x) (7.17)

subject to gi(x) ⩽ 0 for all i = 1, . . . ,m .

It is worth pointing out that the functions f and gi could be non-convex
in general, and we will consider the convex case in the next section.

One obvious, but not very practical, way of converting the constrained
problem (7.17) into an unconstrained one is to use an indicator function

J(x) = f(x) +
m∑
i=1

1(gi(x)) , (7.18)

©2024 M. P. Deisenroth, A. A. Faisal, C. S. Ong. Published by Cambridge University Press (2020).

	Part I Mathematical Foundations
	7 Continuous Optimization
	7.1 Optimization Using Gradient Descent
	7.2 Constrained Optimization and Lagrange Multipliers

	pbs@ARFix@233:
	pbs@ARFix@234:
	pbs@ARFix@235:
	pbs@ARFix@237:
	pbs@ARFix@238:
	pbs@ARFix@239:

