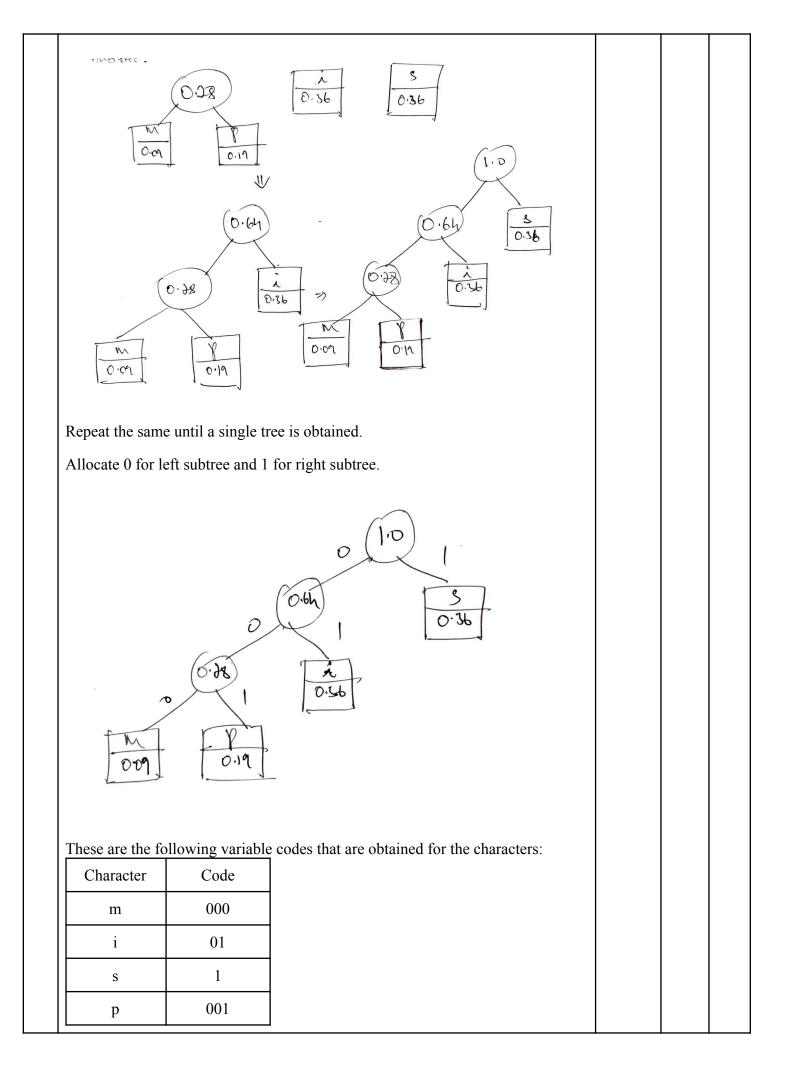
USN					

Internal Assessment Test 3 – August 2024


Sub: ANALYSIS & DESIGN OF ALGORITHMS			Sub Code	Sub Code: BCS401			Branch: AIML/CSEAL		
Date:Duration: 90 minMax Marks: 50Sem/Sec: IV -A, B						, C	OBE		
Answer any FIVE FULL Questions						MARKS	СО	RBT	
1 What is a heap? Explain what is Max heap? How is it used in the Sorting technique? Explain with a neat diagram.					10	CO3	L1		
2 How many bits may be required for encoding the message 'mississippi'? Find how many bits will be transmitted using fixed sized codes and variable sized codes.						10	CO4	L2	
3		lain the iterative backtrack ns problem and give the so		w the state space tre	e	10	CO5	L3	
4	optimal solution	ulation knapsack problem u on using branch and bound p1p4) = (15, 15, 17, 23)	with			10	CO5	L2	
5	Find the cost of the Minimum Spanning Tree using Kruskal's algorithm? 10					10	CO4	L3	
6	solution for	e Knapsack problem with g p1-p7)=(10,5,15,7,6,18,3),	-	-		10	CO4	L3	

CI CCI HOD ------

USN	
-----	--

Internal Assessment Test 3 – August 2024

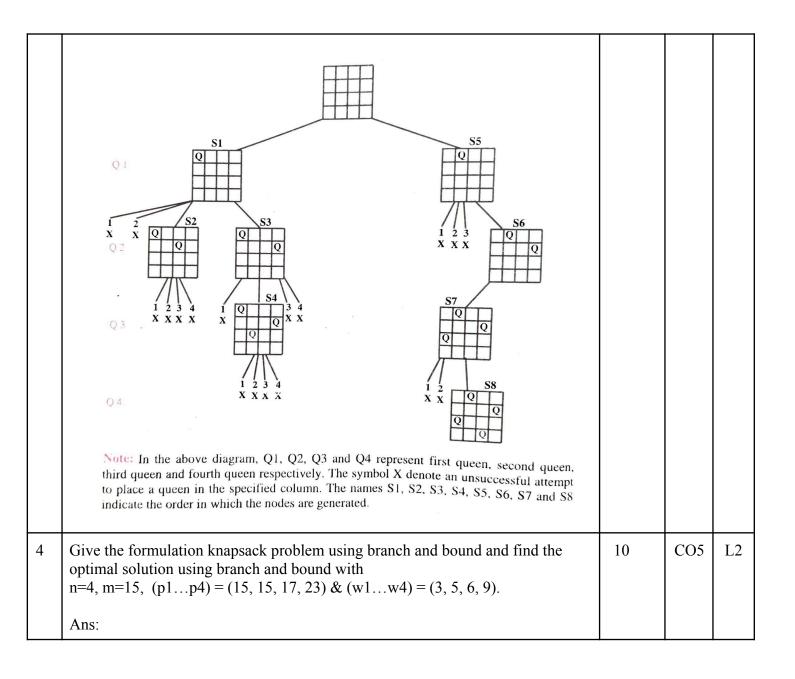
Sub:	ANALYSIS & D	ESIGN OF ALGORITI	HMS	Sub Code	e: BCS401	Branch: AIM	IL/CSEA	L/CSEAIML	
Date:		Duration: 90 min	Max	Marks: 50	Sem/Sec: IV -	-A, B, C	C OBE		
		Answer any FI	VE FULL (<u>)uestions</u>		MARKS	СО	CO RBT	
1	technique? Ex Ans: A heap is defi following con - The bin leaves - The ke childre	p? Explain what is M splain with a neat diag ned as a binary tree w ditions are met: nary tree is a complet may be missing. y at each node is eith m (or) the key at each hildren.	gram. with keys ass te binary tree ter greater th	signed to its e. All its leve an or equal t	nodes provided the els are full. Rightmo to the keys of its	ost	CO3	L1	
	A max heap is equal to its chi pify 5 2 4	defined as a heap whild nodes.	here every in	ternal node	is greater than or				
2	how many bits codes. Ans: Consider the f	s may be required for s will be transmitted u following characters ' and probabilities of	using fixed s	ized codes a	nd variable sized	10	CO4	L2	
	Character	m	i	S	р				
	Frequency	1	4	4	2				

	The no. of bits per character in these codes are:			
	(3*0.09)+(2*0.36)+(1*0.36)+(3*0.19) = 1.92			
	The compression ratio $(3-1.92)/3*100 = 36\%$			
	Huffman encoding will use 36% less memory.			
3	Write and explain the iterative backtracking algorithm. Draw the state space tree for the 4-queens problem and give the solution tuples.	10	CO5	L3
	Ans;			
	 9.1 Exercised Many problems which deal with searching for a set of solutions satisfying some constraints can be solved using backtracking. Now, let us see "What is backtracking?" Definition: Backtracking is a systematic method of searching for the solution to a combinatorial problem by means of an algorithm. Some of the problems that have exponential time complexity can be best solved using backtracking method. The main idea is to create solutions by selecting one component at a time and evaluate such partially constructed candidates as follows: If a partially constructed solution can be developed further without violating the problem's constraints, it is done by taking the first remaining legitimate option for the next component, then remaining alternate components need not be considered. In this case, the algorithm backtracks to replace the last component of the partially constructed solution with its next option. Ex: The various problems that can be solved using backtracking method are: N-queens. Sum of subset 			
	 Hamiltonian circuit Knapsack etc. Now, let us see "What is N-queens problem?" Definition: The N-queen's problem is stated as follows: "Given N x N chess board, it is required to place all N-queens on the chessboard such that no two queens attach each other". That is, two or more queens should not be placed in the same row, same column or same diagonal. The placing of N-queens on the chessboard using the above constraints is called N-queens problem. For example, all four queens can be placed on the chessboard such that no two queens are attacking each other is shown on right hand side using a 2-dimensionay array.			

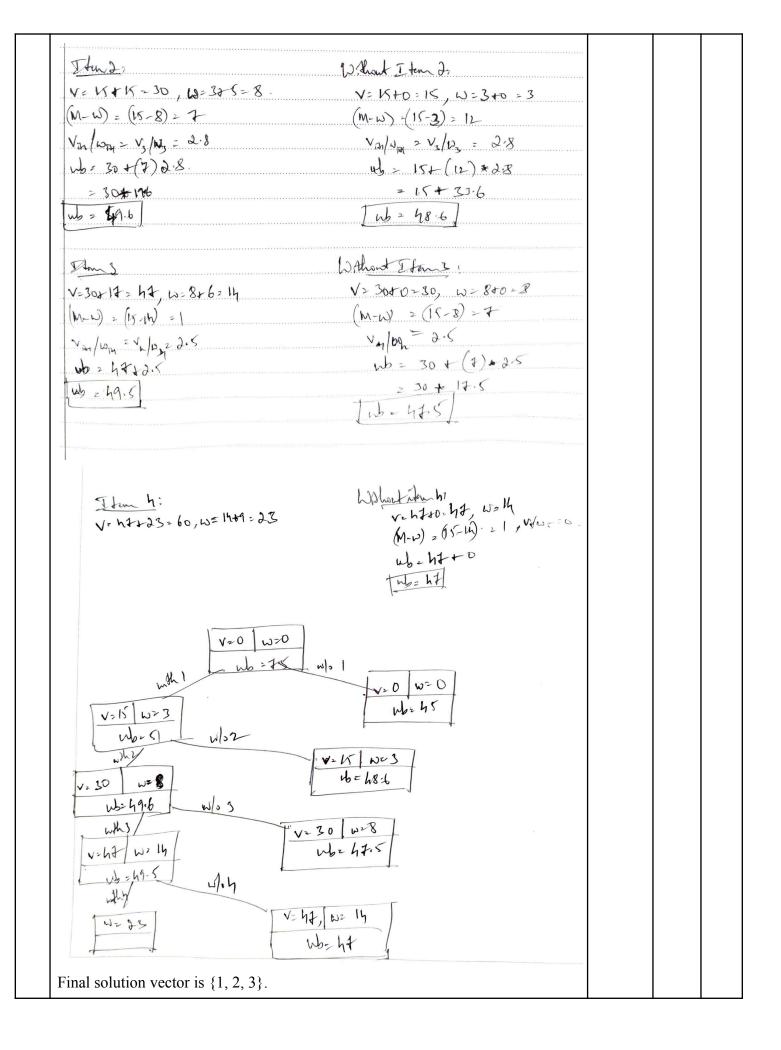
First, let us see "What is a state? What is a state space? What is state space tree?"

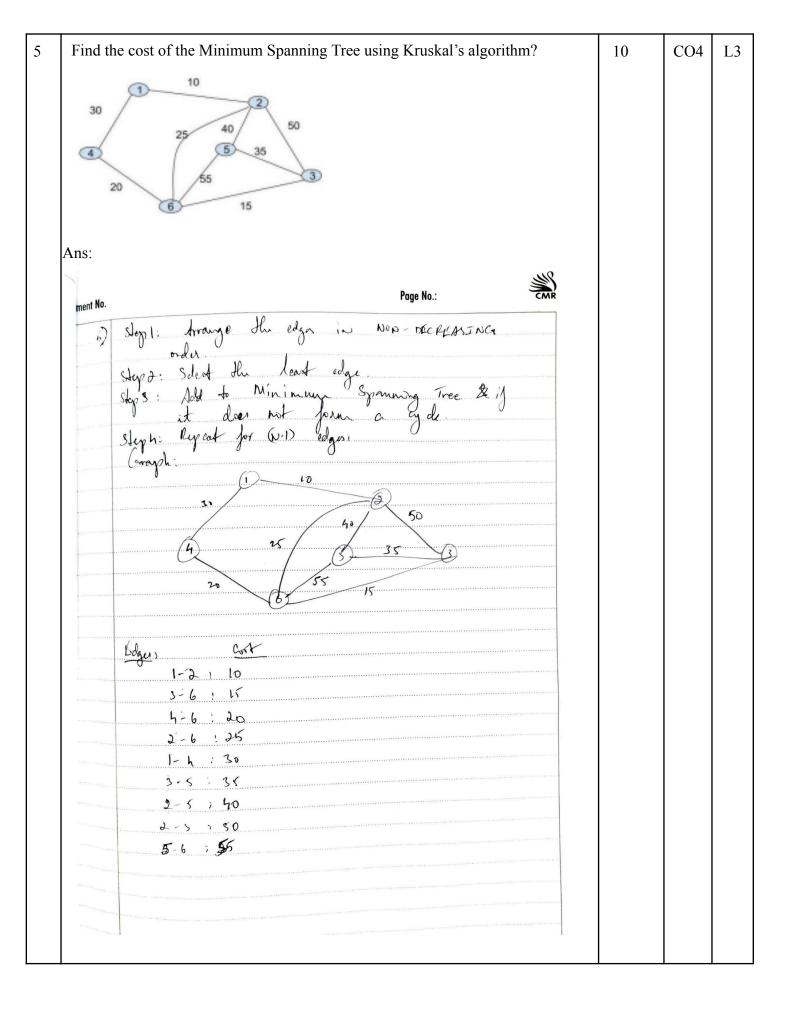
Definition: In any of the problem that can be solved using backtracking, the solution can be expressed as n-tuple:

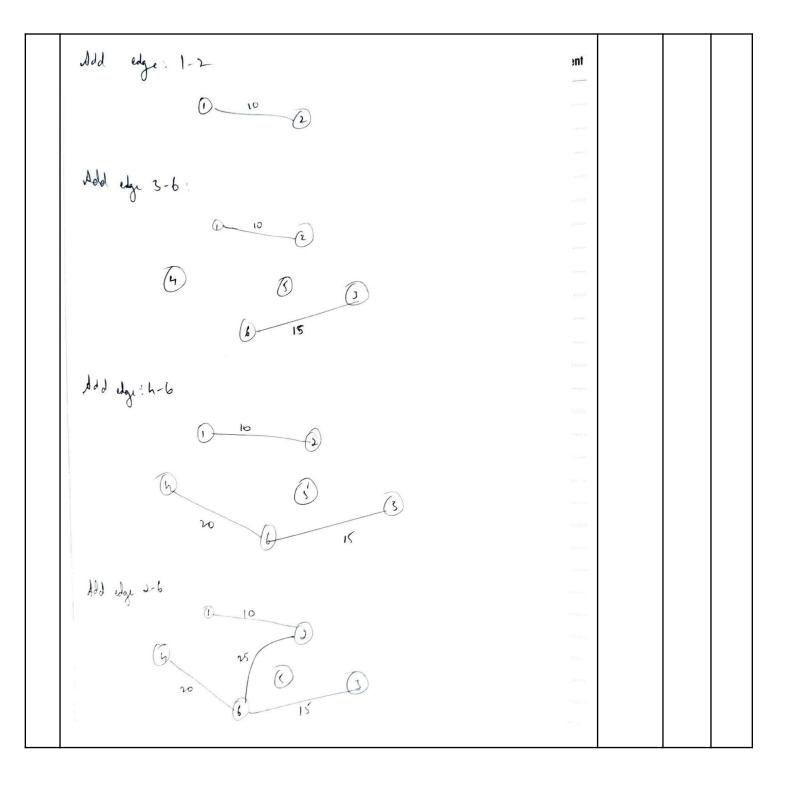
$(x_1, x_2, x_3, \dots, x_n)$


The n-tuple $(x_1, x_2, ..., x_n)$ is called a *state/solution* of the problem where as a set of all such possible state/solutions is called *state/solution space* and it is denoted by S.

Definition: The tree corresponding to the *state/solution space* is called *state space tree* or *solution space tree* which is normally constructed using *depth first search* method. The state/solution space tree can be constructed as follows:


- The root represent the initial state before the search for a solution begins
- The nodes of the first level in the tree indicate the choices made for the first component of a solution. The details such as whether the component is considered or not considered is clearly given. Sometimes, only the selected component is shown.
- The nodes of the second level in the tree indicate the choices made for the second component of a solution and so on.
- A node in the *state space tree* may be promising node or non-promising node. A promising node is the one whose partially constructed solution moves towards the solution. If it is moving away from the solution, the node is called non-promising node.
- Leaves may represent either nonempty dead nodes or complete solutions found by the algorithms
- If the current node is promising then, its child is generated by adding the first remaining legitimate option for the next component of a solution and processing moves to the new child.
- If the current node turns out to be non-promising node, the algorithm backtracks to its parent node to consider the next possible option for its last component. If there is no such option, then it backtracks one more level up the tree and so on.
- Finally, if the algorithm reaches a complete solution to the problem, it either stops (if only one solution is required) or backtracks to continue searching for other possible solutions.


Now, let us "Give the state space tree for solving 4-queens problem for at least one solution" The state space tree can be obtained as shown below:


- Start with an empty board and then place queen 1 in row 1 and column 1
- Then place queen 2 in row 2 after trying unsuccessfully in columns 1 and 2 but placing in column 3 i.e., in square(2, 3).
- From the current configuration, we cannot place queen 3 and we reach the dead end. So, algorithm backtracks and puts queen 2 in next position (2, 4). Then queen 3 is placed at (3, 2) which proves to be another dead end. Proceeding in this way, we get the following state space tree.

n-4, m-	15			
He copacity The	I dhe chor I dhe chor I dhe chor I = 15 II = 5.	el juto		
Tub = 75 Iton 1: V = 15, H = (M-w) - 15-3 Van/ma = V-10 Ub = 15 a (10) Ito = 51	= 12- 02 - 3) • 5	Without Hards V=0, W=0 (M-W)=(15-0) = Vin/0:11 = V, 102 Vb = 0 + /W) = < [Wb = 4:6]	IE 3	

nt No. Page No.: CMR Addredge 2-5: Model edge 1-4 since it forms a cycle Addredge 2-5: (4) 5) 35 3 20 been added (n-1) edger houre Formulate the Knapsack problem with greedy method and find the optimal 6 10 CO4 L3 solution for n=7, m=15, (p1-p7)=(10,5,15,7,6,18,3), (w1-w2)=(2,3,5,7,1,4,1). Ans: P; / w: P W n=7 2 10 5 m=15. 5 3 1.6 5 15 3 1. 7 7 6 1 6 4.5 4 18 3 1 3 NON - decreasing order the iten, Re arrange based on natio Weight of Vous fit PAW: Wisa M=15 .6 6 5 · 10 2 45 .18 h ... 3 15 5 3 3) 1.6 5 3 1 F 7

Select ibu 1.
$$R = 6$$
, $W_{1} = 1$
Told profit = 6
Told verylet = 1 . $TW \leq M$
Select ibu $d = R_{2} = 10$, $W_{2} = 2$
Told profit = $6 + 10 = 16$
Total profit = $6 + 10 = 16$
Select ibu 3: $R_{2} = 18$, $W_{2} = 4$
Total profit = $16 + 18 = 34$
Total profit = $16 + 18 = 12$ ($12 \leq 13$)
Select then $S : R_{2} = 3$, $W_{2} = 1$
Total profit = $11 + 13 = 52$
Total profit = $11 + 13 = 52$
Total profit = $12 + 14 = 115$ ($13 \leq 18$)
Select then $S : R_{2} = 5$, $W_{2} = 3$
Total profit = $13 + 33 = 16$
Total profit = $13 + 33 = 53 = 3$
Total profit = $13 + 33 = 53 = 3$

Т

Т

Т

Т

_	dejort (i)	WI	P ;	× lor re/w;	Pirn	$\frac{*(=)_{1}-\omega_{1}*\pi}{\pi_{1}=1\leq-1=14}$ $\pi_{1}=1\leq-1=12$
	1	1	6	1	6	nc= 15-1= 14
	2	Э	10	1	10	πι = 14 - 2 = 12
	3	4	18	t	18	h = 12 - h = 8
	4	5	15		15	nc= 8-5= 3
	5]	z	1	3	ne= 3-1=2
	Ь	3	5	<i>स</i> प्	2 x 5=3.5	$h_{1} = 3 - 1 = 2$ $h_{2} = 2 - (2 \times 5) = 0$
	0-011 - 011			Total =	55.3	nan anana, Al a 1993 A Al a Ba Taganamanaka ka ka ina ina ina ina ina ina ina ina ina in
	the total	profit		55.3 =		and a second sec

CI CCI HOD