

CMR

INSTITUTE OF

TECHNOLOGY

USN

Sub: Internal Assessment Test III Aug 2024 Optimization Techniques Code: BCS405C

Date: 02/08/2024 Duration: 90 mins Max Marks: 50 Sem: IV Branch: CSDS/CSML

Answer any five of the following. Marks

OBE

CO RB

T

1 Use Steepest Descent method for 22 22),(yxyxyxyxf +++−= starting from (0,0) 10

CO3 L1,L2

2 Use Newton Raphson method to find the smallest root and the second smallest positive roots of

the equation tan x = x correct to 4 decimal places.

10

CO4 L2,L3

3 Define Hessian matrix. Using Hessian matrix classify the relative extreme for the function

38
3

1
),(23 +−+= xyxyxyxf

2+8

CO3
L3

4
Find the linear regression coefficients using Gradient Descent method.

10

CO4 L3

5 Explain in brief 1. Adagrad optimization strategy 2. RMS prop 5+5

CO5
L2

6 What is the difference between convex optimization and non-convex optimization.

Write short notes on ADAM.

5+5 CO5

L2,L3

CMR

INSTITUTE OF

TECHNOLOGY

USN

Sub: Internal Assessment Test III Aug 2024 Optimization Techniques Code: BCS405C

Date: 02/08/2024 Duration: 90 mins Max Marks: 50 Sem: IV Branch: CSDS/CSML

Answer any five of the following. Marks
OBE

CO RBT

1 Use Steepest Descent method for 22 22),(yxyxyxyxf +++−= starting from (0,0) 10

CO3 L1,L2

2 Use Newton Raphson method to find the smallest root and the second smallest positive roots of

the equation tan x = x correct to 4 decimal places.

10

CO4 L2,L3

3 Define Hessian matrix. Using Hessian matrix classify the relative extreme for the function

38
3

1
),(23 +−+= xyxyxyxf

2+8

CO3
L3

4
Find the linear regression coefficients using Gradient Descent method.

10

CO4 L3

5 Explain in brief 1. Adagrad optimization strategy 2. RMS prop 5+5

CO5 L2

6 What is the difference between convex optimization and non-convex optimization.

Write short notes on ADAM.

5+5 CO5
L2,L3

MODULE II
BCS405C – OPTIMIZATION TECHNIQUE

Dr. Ranjini. P. S, M.Sc., M. Phil, Ph. D, M. Tech in Data Science & Machine Learning,
Professor, Department of Artificial Intelligence & Data Science,
Don Bosco Institute of Technology, Bangalore.

28

MODULE II
BCS405C – OPTIMIZATION TECHNIQUE

Dr. Ranjini. P. S, M.Sc., M. Phil, Ph. D, M. Tech in Data Science & Machine Learning,
Professor, Department of Artificial Intelligence & Data Science,
Don Bosco Institute of Technology, Bangalore.

29

MODULE II
BCS405C – OPTIMIZATION TECHNIQUE

Dr. Ranjini. P. S, M.Sc., M. Phil, Ph. D, M. Tech in Data Science & Machine Learning,
Professor, Department of Artificial Intelligence & Data Science,
Don Bosco Institute of Technology, Bangalore.

30

Batch Gradient Descent Stochastic Gradient Descent

No random shuffling of points are
required.

The data sample should be in a random
order, and this is why we want to shuffle the

training set for every epoch.

Can’t escape shallow local
minima easily.

SGD can escape shallow local minima more
easily.

Convergence is slow. Reaches the convergence much faster.

It updates the model parameters
only after processing the entire

training set.

It updates the parameters after each
individual data point.

The learning rate is fixed and
cannot be changed during

training.

The learning rate can be adjusted
dynamically.

It typically converges to the
global minimum for convex loss

functions.

It may converge to a local minimum or
saddle point.

It may suffer from overfitting if
the model is too complex for the

dataset.

It can help reduce overfitting by updating
the model parameters more frequently.

Q9b What is the difference between convex optimization and non convex optimization?

Convex optimization and non-convex optimization are both optimization

problems, but they differ in the number of optimal solutions they can have:

 Convex optimization

In convex optimization, there can only be one globally optimal solution, or it may be

possible to prove that there is no feasible solution. Convex optimization is easier and

more reliable because convex functions have a unique global minimum. Convex

problems can also be solved efficiently, even when they are very large. Examples of

convex optimization problems include multi-period processor speed scheduling,

minimum time optimal control, and grasp force optimization.

 Non-convex optimization

In non-convex optimization, the objective or some of the constraints are non-convex,

which can lead to multiple feasible regions and multiple locally optimal points within

each region. This can make optimization more challenging. Non-convex optimization

can still be a good choice if the optimization scheme doesn't get stuck in a local

minimum. It can also be used to implement more accurate state dynamics. However,

even simple-looking non-convex optimization problems with only ten variables can be

very challenging, and problems with hundreds of variables can be intractable.

called bias correction, we obtain the corrected first and second impulses

respectively.

These correction cause the values of the first and second impulse to be higher

at the beginning of the training than without this correction. As a result, the

first update step of the neural network weight parameters does not become

too large. Thus, the training is not already messed up at the very beginning.

With the additional bias corrections, we obtain the complete form of the

ADAM optimizer.

9a)AdaGrad optimization strategy

Another optimization strategy I would like to introduce is called AdaGrad. The

idea behind AdaGrad is that you keep a running sum of squared gradients

during optimization. In this case, we don’t have a momentum term, but an

expression , which is the sum of squared gradients up to the

time .

When we optimize a weights j , we divide the current gradient Lj by the

root of the term g t+1. To understand the intuition behind AdaGrad, please

imagine a loss function in a two-dimensional space. In this space, the gradient

of the loss function increases very weakly in one direction and very

strongly in the other direction. If we now sum up the gradients along the

axis in which the gradients increase weakly, the squared sum of these

gradients becomes even smaller.

If during the update step we divide the current gradient Lj by a very small

sum of the squared gradients gt+1 , the quotient becomes very high. For the

other axis, along which the gradients increase sharply, exactly the opposite is

true. This means that we speed up the updating process along the axis with

weak gradients by increasing these gradients along this axis. On the other

hand, we slow down the updates of the weights along the axis with large

gradients.

Disadvantages: there is a problem with this optimization algorithm.

If the training takes too long. Over time, this term the sum of squared

gradients would grow larger. When the current gradient is divided by this

large number, the update step for the weights becomes very small. It is as if

we were using a very low learning rate, which becomes even lower the

longer the training takes. In the worst case, we would get stuck at AdaGrad

and the training would go on forever.

9a) &10c)RMSProp

There is a slight modification of AdaGrad called “RMSProp”. This modification

is intended to solve the previously described problem that can occur with

AdaGrad. In RMSProp, the running sum of squared gradients gt+1 is

maintained. However, instead of allowing this sum to increase continuously

over the training period, we allow the sum to decrease.

For RMSProp, the sum of squared gradients is multiplied by a decay rate α

and the current gradient – weighted by (1- α) – is added. The update step in

the case of RMSProp looks the same as in AdaGrad. Here we divide the

current gradient by the sum of the squared gradients to get the nice property

of speeding up the updating of the weights along one dimension and slowing

down the motion along the other.

Although SGD with momentum is able to find the global minimum faster, this

algorithm takes a much longer path that could be dangerous. This is because

a longer path means more potential saddle points and local minima of the

loss function that could lie along that path. RMSProp, on the other hand, goes

straight to the global minimum of the loss function without taking a detour.

1. Handling Non-stationary Objectives:

o RMSProp is particularly well-suited for non-stationary objectives (where the data

distribution changes over time), as it can adjust more dynamically to the changes

compared to Adagrad.

2. Empirical Performance:

o In practice, RMSProp often performs better than Adagrad on a variety of machine

learning tasks. It tends to converge faster and reach better solutions, especially

when dealing with deep learning models.

Overall, RMSProp is generally preferred for its ability to maintain a more stable and effective

learning rate throughout training, leading to better performance on many complex tasks.

9c) Describle the saddle point problem in machine learning.

Key Characteristics of a Saddle Point:

1. Zero Gradient:

 At a saddle point, the gradient of the cost function is zero. This

means that the partial derivatives with respect to each parameter

are all equal to zero.

2.Neither Minimum nor Maximum:

10a)Stochastic Gradient Descent with Momentum

The first of the four algorithms I would like to introduce is called “Stochastic

Gradient Descent with Momentum”:

GL. 2 Stochastic GD (left), SGD with momentum (right).

On the left side in GL. 2 is the formula for the weight updates according to the

regular stochastic gradient descent (SGD for short). The equation on the right

represents the rule for the updates of the weights according to the SGD with

momentum. Momentum appears here as an additional term , which is

added to the regular update rule.

Intuitively speaking, by adding this impulse term, we let our gradient build

up some sort of velocity V during training. The velocity is the running sum of

the gradients weighted by ρ.

The parameter ρ can be thought of as friction that “slows” the velocity down a

bit. In general, velocity can be seen to increase with time. By using the

momentum term, saddle points and local minima become less

dangerous for the gradient. This is because the step size toward the global

minimum now depends not only on the slope of the loss function at the

current point, but also on the velocity that has built up over time.

For a physical representation of stochastic gradient descent with momentum,

imagine a ball rolling down a hill, increasing in velocity with time. If this ball

encounters an obstacle along the way, such as a hole or flat ground with no

slope, its built-up velocity v would give the ball enough force to roll over this

obstacle. In this case, the flat ground represents a saddle point and the hole

represents a local minima of a loss function.

 Both algorithms try to reach the global minimum of the loss function, which is

in a 3D space. Momentum term results in the individual gradients having less

variance and thus less zig-zagging.

10a)ii)ADAM

We take the best of Adagrad and RMS prop and combine these ideas into a

single algorithm called as ADAM.

The main part of this optimization algorithm consists of the following three

equations. These equations may seem complicated at first glance, but if you

look closely, you will see some similarities with the last three optimization

algorithms.

The first expression looks a bit like SGD with momentum. In this case, the

term mt would be the velocity and the term β1 would be the friction term. In

the case of ADAM, we refer to mt as the “first momentum.” On the other

hand, β1 is just a hyperparameter. However, the difference with SGD with

momentum is the factor 11  multiplied by the current gradient.

The second expression can be considered as RMSProp, where we keep the

running sum of squared gradients. Also in this case, there is the factor 21  ,

which is multiplied by the squared gradient.

The term vt in the equation is called the “second momentum” and is also just a

hyperparameter. The final update equation can be viewed as a combination

of RMSProp and SGD with momentum.

Disadvantages

At the very first time step t=0, the first and second pulse terms m0 and v0 are

set to zero. After the first update of the second momentum v1, this term is still

very close to zero. When we update the weight parameters in the last

expression in GL. 5, we divide by a very small second momentum term v1. This

leads to a very large first update step.

 To address the problem of large update steps happening at the beginning of

training, ADAM includes a correction clause:

After the initial update of the first and second pulses, we make an unbiased

estimate of these pulses by considering the current time step. With the so-

called bias correction, we obtain the corrected first and second impulses

respectively.

These correction cause the values of the first and second impulse to be higher

at the beginning of the training than without this correction. As a result, the

first update step of the neural network weight parameters does not become

too large. Thus, the training is not already messed up at the very beginning.

With the additional bias corrections, we obtain the complete form of the

ADAM optimizer.

9a)AdaGrad optimization strategy

Another optimization strategy I would like to introduce is called AdaGrad. The

idea behind AdaGrad is that you keep a running sum of squared gradients

during optimization. In this case, we don’t have a momentum term, but an

expression , which is the sum of squared gradients up to the

time .

When we optimize a weights j , we divide the current gradient Lj by the

root of the term g t+1. To understand the intuition behind AdaGrad, please

imagine a loss function in a two-dimensional space. In this space, the gradient

of the loss function increases very weakly in one direction and very

strongly in the other direction. If we now sum up the gradients along the

axis in which the gradients increase weakly, the squared sum of these

gradients becomes even smaller.

