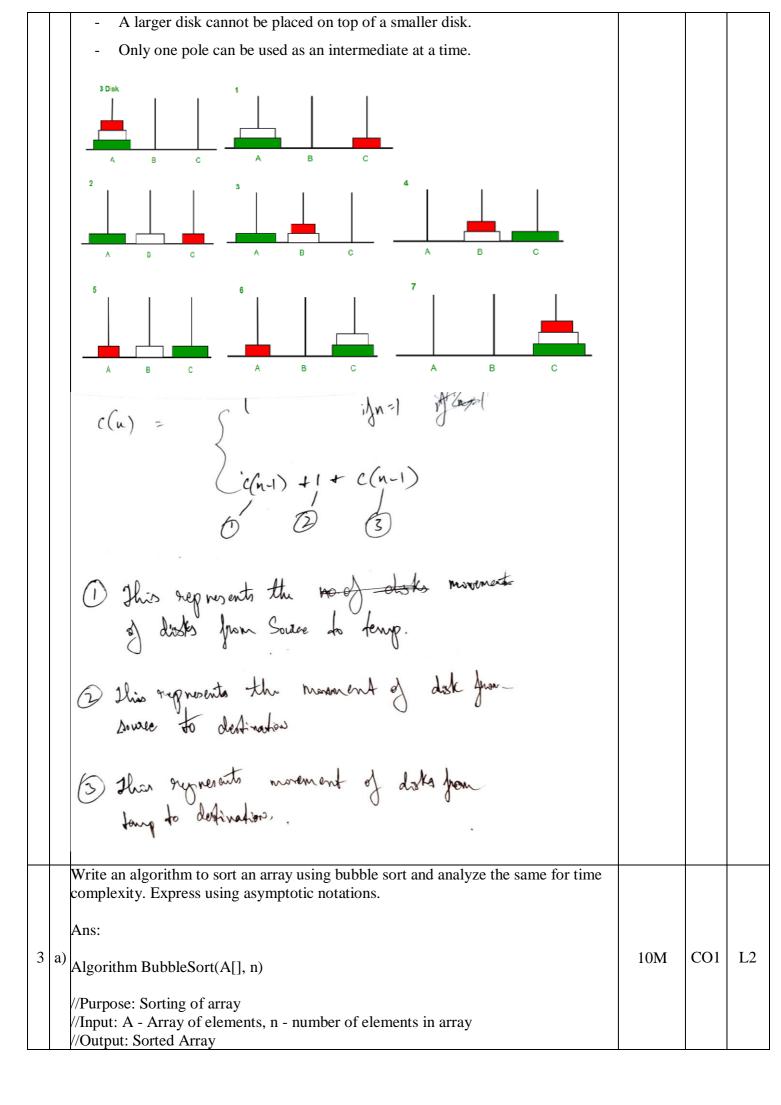
USN					

nternal	Assessment	Test 1 -	– June 2024

		Internal Assessment Test 1 – June 2024			
Su	b:	ANALYSIS & DESIGN OF ALGORITHMS Sub Code: BCS401 Brar	nch: AIM	IL/AID	S
Da	te:	06.05.24 Duration: 90 minutes Max Marks: 50 Sem/Sec: IV -A, B,	, C	OF	BE
		Answer any FIVE FULL Questions	MARKS	со	RBT
	a)	What is an algorithm? Write Euclid's algorithm to find the GCD of two numbers.	5M	CO1	L1
1.	b)	Evaluate the following: I. $f(n) = 10n^2 + 4n + 2$, prove that $f(n) = O(n^2)$ II. $f(n) = 100n + 5$, prove that $f(n) = \Omega(n)$	5M	CO1	L3
2	a)	Define the Mathematical Analysis of Recursive Algorithms with the help of an example.	5M	CO1	L2
	b)	Define Towers of Hanoi problem and describe the time complexity.	5M	CO1	L2
3	a)	Write an algorithm to sort an array using bubble sort and analyze the same for time complexity. Express using asymptotic notations.	10M	CO1	L2
4	- 21	Compare Merge Sort and Binary Search algorithms with respect to their time complexities.	10M	CO2	L2
5	a)	Write the Inorder, Postorder & Preorder traversals of the following tree:	5M	CO2	L2
	b)	Write the algorithm for Selection sort.	5M	CO1	L1
6		Partition the array [10, 2, 4, 14, 5, 6, 11, 15, 3, 20] using the Quick Sort algorithm.	5M	CO2	L3
6	1->	What is the Recurrence relation of the Binary Search algorithm? What is the analysis of the Best and Worst cases?	5M	CO2	L2

CI	CCI	HOD
	All the Best	
	i in the Dest	

USN					

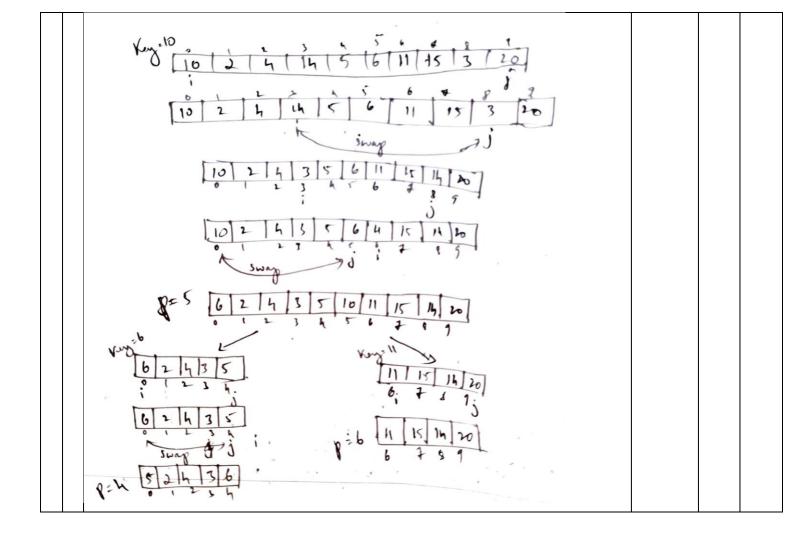


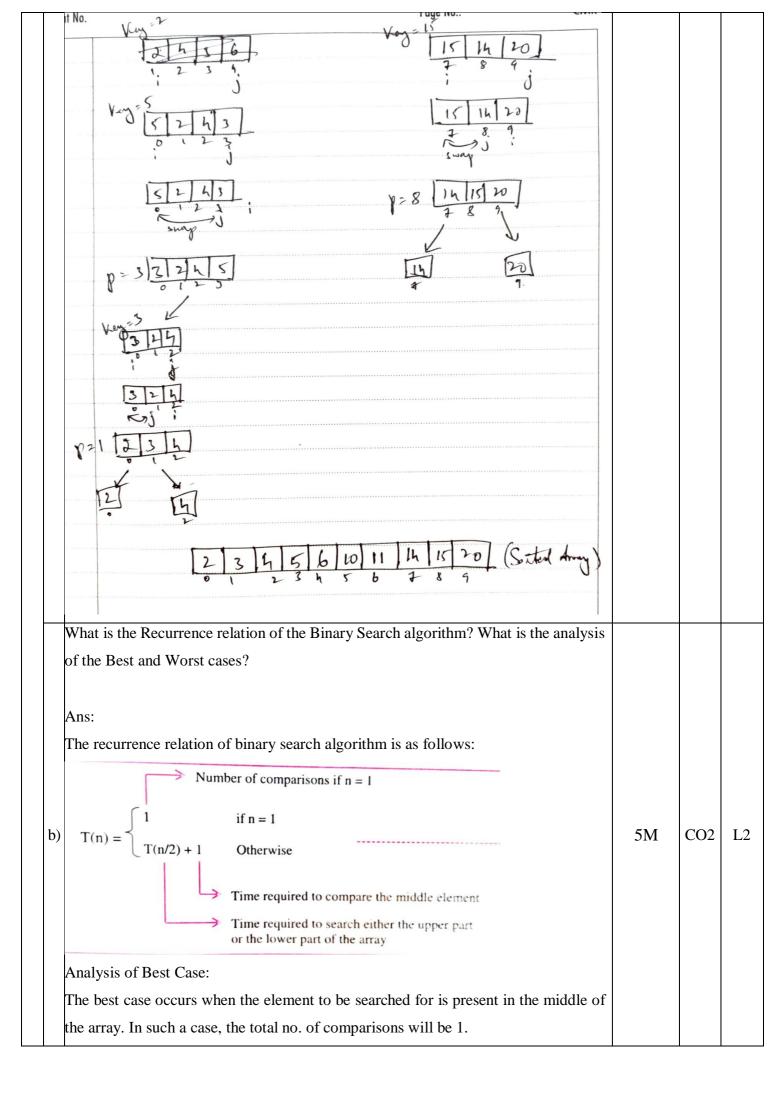
				al Assessment	Test							
Sub:	b: ANALYSIS & DESIGN OF ALGORITHMS Sub Code: BCS401 Br					Bra	nch:	AIN	ML/AIDS			
Date:	Date: 06.05.24 Duration: 90 minutes Max Marks: 50 Sem/Sec: IV -A, B								, C		OI	BE
	Answer any FIVE FULL QuestionsWhat is an algorithm? Write Euclid's algorithm to find the GCD of two numbers.										CO	RBT
a) 1.	Ans: An algo followed to a	prithm is define complish a finite number. PROBLEM ↓ ALGORITHI ↓ → COMPUTER uclid(m, n) gcd(m,n) d n, positive D of m and do d n	ined as a finit given task. I er of steps by M $R \longrightarrow OL$	algorithm to fi	f unan step p	nbiguous ins rocedure to s	tructions solve a give	en	51	М	CO1	L1
b)	I. $f(n)$	$= 10n^2 + 4$	-	that $f(n) =$ $f(n) = \Omega(n)$	0(n ²))			51	М	CO1	L3
	Ans: Given f	f(n) = 10r	$i^2 + 4n + 2$,	,								

Internal Assessment Test 1 – June 2024

	Replace $4n$ and 2 with n^2 .			
	$cg(n) = 10n^2 + n^2 + n^2$			
	$= 12n^2$			
	$f(n) \in O(n)$ only if $f(n) \le cg(n)$ for all $n \ge n_0$			
	$10n^2 + 4n + 2 \le 12n^2$ for all $n \ge 3$ where $c = 12$.			
	Therefore, by definition $f(n) = O(n^2)$			
	Ans: Given $f(n) = 100n + 5$,			
	Replace 5 with <i>n</i> .			
	cg(n) = 100n + n			
	= 101n			
	$f(n) \in \Omega(n)$ only if $f(n) \ge cg(n)$ for all $n \ge n_0$			
	$100n + 5 \ge 101n$ for all cannot be satisfied for any $n \ge n_0$			
	Therefore, by definition $f(n) \notin \Omega(n)$			
	Define the Mathematical Analysis of Recursive Algorithms with the help of an			
	example.			
2	Ans: Recursion is a method of solving the problem where the solution to a problem depends on solutions to smaller instances of the same problem. A recursive function	5M	CO1	L2
	is a function that calls itself during execution.			

Branybe: int fact (int n) 2 if (n=> 0) networm 1; else networm (n + fact (n-1)); 3 Here consider h=1, if n=1, then 1! = 1 * Jact6) 0! = 1. Factorial of n=0 Returns 1, therefore $1!=1 \neq 1$. = 1 The Base care is when n=0. n!=1 if n=0. Consider n= 5, 51 = 5 * 41 h1= 4+3! 1= 3+21 21 = 2 * 1! 11 = 1 = 01 $\int \frac{n!}{n!} = \frac{n \cdot r}{n \cdot r} \frac{(n-1)!}{(n-1)!} \frac{n}{n} \frac{n \cdot r}{n \cdot r} \frac{n$ Define Towers of Hanoi problem and describe the time complexity. Ans: In the Tower of Hanoi problem, there are 3 poles A, B & C. There are n disks of different sizes and they are placed in such a way that the smaller disk is placed on the disk of larger size. The smallest disk will be on top and the largest disk will be at the bottom. CO1 L2 b) 5M The two other poles B & C are empty. The disks need to be transferred from pole A to pole C using pole B as an auxiliary pole. The following rules need to be applied: Only one disk can be moved at a time from one pole to another. _


		for $j < 1$ to $(n-1)$ do for $i < 0$ to $n-j-1$ do if(A[i] > A[i+1]) temp $< A[i]$ A[i] < A[i+1] A[i+1] < - temp end if end for end for In Bubble Sort, there are three different scenarios, each with a unique time			
		complexity: 1. Best case scenario: The best case scenario occurs when the input list is already sorted. In this case, Bubble Sort performs $(n-1)$ comparisons and zero swaps, leading to a time complexity of $O(n)$.			
		2. Average case scenario: The average case scenario happens with randomly arranged data. The number of swaps and comparisons is roughly half the total number of pairs, leading to a time complexity of $O(n^2)$.			
		3. Worst case scenario: The worst case scenario occurs when the input list is sorted in the exact opposite order. In this case, every pair of adjacent elements is swapped, leading to a time complexity of $O(n^2)$.			
		Comparisons in the first pass: n-1 Comparisons in the second pass: n-2 Comparisons in the third pass: n-3			
		Comparisons in the last pass: 1 So, the total number of comparisons = $(n-1)+(n-2)+(n-3)++1 = n^*(n-1)/2$ which is equivalent to $O(n^2)$. $C(n) \in O(n^2)$.			
		Compare Merge Sort and Binary Search algorithms with respect to their time complexities.			
4	a)	((n) - { 2c(4) + othernite.	10M	CO2	L2


The time complexity of Mage nost algorithm is

$$\begin{aligned}
f(n) &= c_n(n_{h-1}) + c_n(n_{h-1}) + n \\
&= 2 \int_{0}^{\infty} c_n(n_{h-1}) + n_{h-1} \int_{0}^{\infty} + n \\
&= 2^{\infty} c_n(n_{h-1}) + 2n \\
&= 2^{\infty} \int_{0}^{\infty} c_n(n_{h-1}) + 2n \\
&= 2^{\infty} \int_{0}^{\infty} c_n(n_{h-1}) + 2n \\
&= 2^{\infty} \int_{0}^{\infty} c_n(n_{h-1}) + n_{h-1} \\
&= 2^{\infty} c_n(n_{h-1}) + n_{h-1} \\
&= n_{n-1}(n_{h-1}) + n_{h-1} \\
&= n_{h-1}(n_{h-1}) + n_{h-1}(n_{h-1}) +$$

The time complexity of Binary Search is grow by if n=1 otherwsre. $c(n) = \int$ c(n)2) +1 ((h) = ((n/2)+7 = C(u/h) + 1 4 = c2(1/23)+3 = C(n/2r) + 4= i + c(n/2i). Let 2'= n; c(n) 2 i+ c(1/n) 2 i + c(i) Taking boy, å ly 2 = log n i 2 log n Tc(n) c o(log n) (c(w) = hugh me complementes of Mergesort trave conglements of Mergesort Dinary Scarch of Mergesort the . nh Write the Inorder, Postorder & Preorder traversals of the following tree: 68 5 CO2 L2 a) 5M 16

5a) Inorder: (Vdp) => 68, 23, 16, Postonder (der): 16, 44,55, 23, 68, 95, 84, 69 Inorder (der): 16, 23, 44, 55, 68, 68, 69, 8	, b <i>2</i> -	
 Write the algorithm for Selection sort. Ans: Algorithm SelectionSort(A[], n) //Purpose: To sort the given elements in ascending or //Input: A - Array of elements, n - size of the no. of elements. b) for i <- 0 to n-2 do pos <- i for j <- i+1 to n-1 do if(A[j] < A[pos]) pos <- j end for temp <- A[pos] A[pos] <- A[i] A[i] <- temp end for 	lements in the array. 5M CO1	L1
6 a) Ans:	ing the Quick Sort algorithm. 5M CO2	L3

	Analysis of Worst Case:		
·	The worst case occurs when maximum no. of comparisons are done to search the		
(element.		

CI	CCI	HOD
	All the Best	