

USN

Internal Assessment Test 1 – June 2024

Sub: ANALYSIS & DESIGN OF ALGORITHMS Sub Code: BCS401 Branch: AIML/AIDS

Date: 06.05.24 Duration: 90 minutes Max Marks: 50 Sem/Sec: IV -A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1.

a)
What is an algorithm? Write Euclid's algorithm to find the GCD of two numbers.

5M CO1 L1

b)

Evaluate the following:

I. 𝑓(𝑛) = 10𝑛2 + 4𝑛 + 2, prove that 𝑓(𝑛) = 𝑂(𝑛2)

II. 𝑓(𝑛) = 100𝑛 + 5, prove that 𝑓(𝑛) = 𝛺(𝑛)

5M CO1 L3

2
a)

Define the Mathematical Analysis of Recursive Algorithms with the help of an

example.
5M CO1 L2

b) Define Towers of Hanoi problem and describe the time complexity.
5M CO1 L2

3 a)
Write an algorithm to sort an array using bubble sort and analyze the same for time

complexity. Express using asymptotic notations.
10M CO1 L2

4 a)
Compare Merge Sort and Binary Search algorithms with respect to their time

complexities.
10M CO2 L2

5

a)

Write the Inorder, Postorder & Preorder traversals of the following tree:

5M CO2 L2

b) Write the algorithm for Selection sort. 5M CO1 L1

6

a) Partition the array [10, 2, 4, 14, 5, 6, 11, 15, 3, 20] using the Quick Sort algorithm. 5M CO2 L3

b)
What is the Recurrence relation of the Binary Search algorithm? What is the analysis

of the Best and Worst cases?
5M CO2 L2

CI CCI HOD

--All the Best--

USN

Internal Assessment Test 1 – June 2024

Sub: ANALYSIS & DESIGN OF ALGORITHMS Sub Code: BCS401 Branch: AIML/AIDS

Date: 06.05.24 Duration: 90 minutes Max Marks: 50 Sem/Sec: IV -A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1.

a)

What is an algorithm? Write Euclid's algorithm to find the GCD of two numbers.

Ans: An algorithm is defined as a finite sequence of unambiguous instructions

followed to accomplish a given task. It is a step by step procedure to solve a given

problem in a finite number of steps by accepting a set of inputs and producing the

desired result.

Algorithm Euclid(m, n)

//Computes gcd(m,n)

//Input: m and n, positive integers.

//Output: GCD of m and n.

while n != 0 do

 r <- m mod n

 m <- n

 n <- r

return m

5M CO1 L1

b)

Evaluate the following:

I. 𝑓(𝑛) = 10𝑛2 + 4𝑛 + 2, prove that 𝑓(𝑛) = 𝑂(𝑛2)

II. 𝑓(𝑛) = 100𝑛 + 5, prove that 𝑓(𝑛) = 𝛺(𝑛)

Ans: Given 𝑓(𝑛) = 10𝑛2 + 4𝑛 + 2,

5M CO1 L3

Replace 4𝑛 and 2 with 𝑛2.

𝑐𝑔(𝑛) = 10𝑛2 + 𝑛2 + 𝑛2

= 12𝑛2

𝑓(𝑛) ∈ 𝑂(𝑛) only if 𝑓(𝑛) ≤ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛0

10𝑛2 + 4𝑛 + 2 ≤ 12𝑛2 for all 𝑛 ≥ 3 where 𝑐 = 12.

Therefore, by definition 𝑓(𝑛) = 𝑂(𝑛2)

Ans: Given 𝑓(𝑛) = 100𝑛 + 5,

Replace 5 with 𝑛.

𝑐𝑔(𝑛) = 100𝑛 + 𝑛

= 101𝑛

𝑓(𝑛) ∈ 𝛺(𝑛) only if 𝑓(𝑛) ≥ 𝑐𝑔(𝑛) for all 𝑛 ≥ 𝑛0

100𝑛 + 5 ≥ 101𝑛 for all cannot be satisfied for any 𝑛 ≥ 𝑛0

Therefore, by definition 𝑓(𝑛) ∉ 𝛺(𝑛)

2 a)

Define the Mathematical Analysis of Recursive Algorithms with the help of an

example.

Ans: Recursion is a method of solving the problem where the solution to a problem

depends on solutions to smaller instances of the same problem. A recursive function

is a function that calls itself during execution.

5M CO1 L2

b)

Define Towers of Hanoi problem and describe the time complexity.

Ans: In the Tower of Hanoi problem, there are 3 poles A, B & C. There are n disks of

different sizes and they are placed in such a way that the smaller disk is placed on the

disk of larger size. The smallest disk will be on top and the largest disk will be at the

bottom.

The two other poles B & C are empty.

The disks need to be transferred from pole A to pole C using pole B as an auxiliary

pole.

The following rules need to be applied:

- Only one disk can be moved at a time from one pole to another.

5M CO1 L2

- A larger disk cannot be placed on top of a smaller disk.

- Only one pole can be used as an intermediate at a time.

3 a)

Write an algorithm to sort an array using bubble sort and analyze the same for time

complexity. Express using asymptotic notations.

Ans:

Algorithm BubbleSort(A[], n)

//Purpose: Sorting of array

//Input: A - Array of elements, n - number of elements in array

//Output: Sorted Array

10M CO1 L2

for j<- 1 to (n-1) do

 for i<- 0 to n-j-1 do

 if(A[i] > A[i+1])

 temp <- A[i]

 A[i] <- A[i+1]

 A[i+1] <- temp

 end if

 end for

end for

In Bubble Sort, there are three different scenarios, each with a unique time

complexity:

1. Best case scenario: The best case scenario occurs when the input list is already

sorted. In this case, Bubble Sort performs (n-1) comparisons and zero swaps, leading

to a time complexity of 𝑂(𝑛).

2. Average case scenario: The average case scenario happens with randomly

arranged data. The number of swaps and comparisons is roughly half the total

number of pairs, leading to a time complexity of 𝑂(𝑛2).

3. Worst case scenario: The worst case scenario occurs when the input list is sorted

in the exact opposite order. In this case, every pair of adjacent elements is swapped,

leading to a time complexity of 𝑂(𝑛2).

Comparisons in the first pass: n-1

Comparisons in the second pass: n-2

Comparisons in the third pass: n-3

...

Comparisons in the last pass: 1

So, the total number of comparisons = (n-1)+(n-2)+(n-3)+...+1 = n*(n-1)/2 which is

equivalent to 𝑂(𝑛2).

𝐶(𝑛) ∈ 𝑂(𝑛2).

4 a)

Compare Merge Sort and Binary Search algorithms with respect to their time

complexities.

10M CO2 L2

5 a)

Write the Inorder, Postorder & Preorder traversals of the following tree:

5M CO2 L2

b)

Write the algorithm for Selection sort.

Ans:

Algorithm SelectionSort(A[], n)

//Purpose: To sort the given elements in ascending order.

//Input: A - Array of elements, n - size of the no. of elements in the array.

//Output: Sorted array.

for i <- 0 to n-2 do

 pos <- i

 for j <- i+1 to n-1 do

 if(A[j] < A[pos])

 pos <- j

 end for

 temp <- A[pos]

 A[pos] <- A[i]

 A[i] <- temp

end for

5M CO1 L1

6 a)

Partition the array [10, 2, 4, 14, 5, 6, 11, 15, 3, 20] using the Quick Sort algorithm.

Ans:

5M CO2 L3

b)

What is the Recurrence relation of the Binary Search algorithm? What is the analysis

of the Best and Worst cases?

Ans:

The recurrence relation of binary search algorithm is as follows:

Analysis of Best Case:

The best case occurs when the element to be searched for is present in the middle of

the array. In such a case, the total no. of comparisons will be 1.

5M CO2 L2

Analysis of Worst Case:

The worst case occurs when maximum no. of comparisons are done to search the

element.

CI CCI HOD

--All the Best--

