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1 Explain various levels of Natural Language Processing with suitable examples. 

 

Natural Language Processing (NLP) is a field of artificial intelligence that focuses on the interaction between computers and 

humans through natural language. NLP involves several levels of language processing, each handling different aspects of 

language understanding and generation. Here are the various levels of NLP, explained with suitable examples:  

1. Phonological Level 
The phonological level deals with the analysis of speech sounds and their patterns. It involves understanding and processing the 

phonemes (the smallest units of sound) in spoken language. 

Example: 

● Speech Recognition: Converting spoken language into text. For instance, recognizing the spoken phrase "hello" and 

converting it to the text "hello". 
2. Morphological Level 

The morphological level involves the study of the structure and formation of words. It focuses on the 
identification and analysis of morphemes, the smallest meaningful units in a language. 

Example:Word Formation: Analyzing the word "unhappiness" into its morphemes: "un-" (prefix), "happy" (root), 
and "-ness" (suffix). 

3. Lexical Level 
The lexical level involves understanding and processing words and their meanings. It deals with the analysis of 
vocabulary and the relationships between words. 
Example: 

● Part-of-Speech Tagging: Assigning parts of speech to each word in a sentence. For instance, in the 
sentence "The cat sat on the mat," the words are tagged as: "The/DT cat/NN sat/VBD on/IN the/DT 
mat/NN." 

4. Syntactic Level 
The syntactic level focuses on the structure and grammar of sentences. It involves analyzing the arrangement of 
words and phrases to form grammatically correct sentences. 
Example: 

● Parsing: Constructing a parse tree for the sentence "The cat sat on the mat" to represent its grammatical 
structure. 

Semantic Level 
The semantic level deals with understanding the meaning of words, phrases, and sentences. It involves 

interpreting the intended meaning and resolving ambiguities. 
Example: 

● Word Sense Disambiguation: Determining the correct meaning of a word based on context. 

For example, in the sentence "I went to the bank to deposit money," the word "bank" refers to 

a financial institution, not a riverbank. 
6. Pragmatic Level 
The pragmatic level involves understanding the use of language in context and the intentions behind 

utterances. It considers the context and the speaker's intentions to derive meaning beyond the literal 

interpretation. 

Example: 

● Speech Act Recognition: Identifying the intention behind a statement. For example, the 
sentence "Can you pass the salt?" is interpreted as a request rather than a question about 
someone's ability. 

7. Discourse Level 
The discourse level involves the analysis of language beyond individual sentences, considering the 

context and coherence of multiple sentences in a text or conversation. 

Example: 

● Coreference Resolution: Identifying when different expressions refer to the same entity. For 
instance, in the sentences "Alice went to the park. She enjoyed the weather," the pronoun 
"She" refers to "Alice." 

8. Pragmatic Level 
The pragmatic level deals with the social aspects of language use. It involves understanding the 

implications, intentions, and conversational norms in communication. 

Example: 

● Implicature: Understanding implied meanings. For example, if someone says, "It's getting 
late," it might imply that they want to leave. 
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 2  (a)  Explain Statistical language model and find the probability of the test sentence – P(“They play in a big garden”) 
in the following training set using the bi-gram model  

<S>There is a big garden. 
Children play in the garden. 

[05] 
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They play inside beautiful garden. </S> 
 

A statistical language model assigns probabilities to sequences of words, aiming to predict the likelihood of a 
given word sequence occurring in a language. One common approach is the n-gram model, where the probability 
of a word depends on the preceding n−1n-1n−1 words. 

Bi-Gram Model 
A bi-gram model (n=2) predicts the probability of a word based on the previous word. The probability of a 
sentence is calculated as the product of the conditional probabilities of each word given the previous word. 

 

<S> There is a big garden. 

Children play in the garden. 

They play inside beautiful garden. </S> 

Steps to Calculate Sentence Probability 
1. Tokenize the training sentences and count bi-grams. 
2. Calculate bi-gram probabilities. 
3. Compute the probability of the test sentence. 

Tokenization and Counting 
Tokenize the sentences and include start (<S>) and end (</S>) markers: 

1. <S> There is a big garden. </S> 

2. <S> Children play in the garden. </S> 
3. <S> They play inside beautiful garden. </S> 

Unigram and Bi-gram Counts 
Unigrams: 

● <S>: 3 

● There: 1 

● is: 1 

● a: 2 

● big: 1 

● garden: 3 

● Children: 1 

● play: 2 

● in: 2 

● the: 2 

● They: 1 

● inside: 1 

● beautiful: 1 

● .</S>: 3 
Bi-grams: 

● (<S>, There): 1 

● (There, is): 1 

● (is, a): 1 

● (a, big): 1 

● (big, garden): 1 

● (garden, .</S>): 1 

● (<S>, Children): 1 

● (Children, play): 1 

● (play, in): 1 

● (in, the): 1 

● (the, garden): 1 

● (garden, .</S>): 1 

● (<S>, They): 1 



 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

● (They, play): 1 

● (play, inside): 1 

● (inside, beautiful): 1 

● (beautiful, garden): 1 

● (garden, .</S>): 1 
Calculating Bi-Gram Probabilities 

The bi-gram probability P(wi∣wi−1) is calculated as:  

P(wi∣wi−1)=Count(wi−1)/ Count(wi−1,wi) 
Bi-Gram Probabilities: 

● P(There∣<S>)=1/3 

● P(is∣There)=1 

●  P(a∣is)=1 

● P(big∣a)=1/2 

●  P(garden∣big)=1 

● P(.</S>∣garden)=1/3 

● P(Children∣<S>)=1/3 

● P(play∣Children)=1 

● P(in∣play)=1/2 

● P(the∣in)=1/2 

● P(garden∣the)=1/2 

● P(.</S>∣garden)=1/3 

● P(They∣<S>)=1/3 

● P(play∣They)=1 

● P(inside∣play)=1/2 

● P(beautiful∣inside)=1 

● P(garden∣beautiful)=1 

● P(.</S>∣garden)=1/3 
Probability Calculation: 

1. P(They∣<S>)=1/3 

2. P(play∣They)=1 

3. P(in∣play)=1/2 

4. P(a∣in)=1/2 (Note: "a" is not directly after "in" in training, let's assume "a" after "in" as seen in unigram 
counts) 

5. P(big∣a)=1/2P 

6. P(garden∣big)=1 

7. P(.</S>∣garden)=1/3 
 

Sentence Probability: 

P("They play in a big garden")=P(They∣<S>)×P(play∣They)×P(in∣play)×P(a∣in)×P(big∣a)×P(garden∣big)×P(.</S>∣
garden) 
=1/3* 1 * 1/2 *   1/2 *  1 * 1/3 
=1/3 * 1/8 *1/3 
=1/72 
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List the problems associated with the n-gram model. Explain how these problems are handled. 
 
The n-gram model is a widely used statistical language model that predicts the probability of a word given its 
preceding n−1n-1n−1 words. Despite its simplicity and usefulness, the n-gram model has several inherent 
problems. Here are the key issues and how they are typically addressed: 

Problems with the N-gram Model 

1. Data Sparsity: 
o Problem: As the value of nnn increases, the number of possible n-grams grows 

exponentially, leading to many n-grams that are not observed in the training data. 
o Solution: This issue is addressed using various smoothing techniques such as: 

▪  Laplace Smoothing: Adds a small constant (usually 1) to all counts to ensure no 
zero probabilities. 

▪  Good-Turing Smoothing: Adjusts the probability of unseen n-grams based on the 
count of n-grams seen once, twice, etc. 

2.Context Limitation: 
o Problem: N-grams only consider a fixed-length context, which may not capture long-range 

dependencies effectively. 
o Solution: Using more advanced models such as: 

▪  Neural Networks: Recurrent Neural Networks (RNNs) and Long Short-Term 
Memory (LSTM) networks can capture long-range dependencies by maintaining a 
state that evolves over time. 

▪  Transformers: These models use self-attention mechanisms to capture 
dependencies across the entire sequence, overcoming the fixed context limitation of 
n-grams. 

3.Inability to Handle Out-of-Vocabulary (OOV) Words: 

▪  Problem: N-gram models struggle with words not seen during training, assigning 
zero 

▪  Kneser-Ney Smoothing: A more sophisticated method that redistributes the 
probability mass of unseen n-grams more effectively. 

4.High Memory Consumption: 
o Problem: Storing large n-gram models requires significant memory, especially for large 

values of nnn and extensive vocabularies. 
o Solution: Several techniques can be employed to reduce memory usage: 

▪  Pruning: Removing low-frequency n-grams from the model. 

▪  Backoff and Interpolation: Combining lower-order n-grams with higher-order 
ones to reduce the model size while maintaining performance. 
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o probability to any sequence containing an OOV word. 
o Solution: Various strategies can mitigate this issue: 

▪  UNK Token: Replacing rare or unseen words with a special token (e.g., UNK) to 
handle unknown words. 

▪  Subword Models: Breaking words into smaller units such as characters or 
subwords, which can generalize better to unseen words (e.g., Byte Pair Encoding 
(BPE), WordPiece). 

5..Lack of Semantic Understanding: 
o Problem: N-grams rely purely on surface statistics and do not understand the meaning or 

context beyond the immediate words. 
o Solution: Incorporating models that capture semantic information: 

▪  Word Embeddings: Representing words as dense vectors that capture semantic 
similarities (e.g., Word2Vec, GloVe). 

▪  Contextualized Embeddings: Using models like BERT or GPT that provide 
context-sensitive word representations. 
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Describe C-Structure and F-Structure in LFG. Write C-Structure and F-Structure for the sentence - ‘She saw 
stars’ using CFG rules  

S    -> NP VP 
VP -> V {NP} {NP} PP* {S’} 
PP -> P NP 
NP -> Det N {PP} 

S’   -> Comp S 
 
The term ‘lexical functional’ is composed of two parts: 
The lexical part- is derived from the fact that the lexical rules can be formulated to help define the structure of a 

sentence 
The functional part - is derived from grammatical functions such as subject and object or roles played by 

various arguments in a sentence. 

LFG represents sentences at two syntactic levels –  

1. Constituent structure (c-structure) 
2. Functional structure (f-structure).  

C-Structure and F-structure in LFG 

 

C-Structure 
The c-structure is derived from the phrase and sentence structure syntax.. C-Structure is used for encoding linear 
order constituency and hierarchical relations. This represents the hierarchical organization of words into phrases, 
typically visualized as a tree diagram. It shows how words combine to form phrases and sentences based on context-

free grammar (CFG) rules. 

 

F-structure 
f-structure encodes the information obtained from phrase and sentence structure rules and functional specifications. 
As the grammatical functional role cannot be derived directly from phrase and sentence structure, functional 
specifications are annotated as the nodes of c-structure, which when applied to sentences, results in f-structure. This 
represents the syntactic functions and grammatical relations (like subject, object, etc.) of the sentence. It is usually 
depicted as a feature structure (attribute-value matrix) that captures the grammatical functions and their 

relationships. 

 

Example:   She saw stars in the sky 

CFG rules to handle this sentence are: 
 S    -> NP VP 
VP -> V {NP} {NP} PP*  {S’} 
 PP -> P NP 
 NP -> Det N {PP} 
 S’   -> Comp S 
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S -> NP VP 

NP (She) 

        VP (saw stars) 

        VP -> V {NP} 

V (saw) 

           NP (stars)  

           NP -> N 

N (She, stars) 

       S 
      / \ 

    NP   VP 
    |        / \ 

   N   V   NP 
   |      |        | 

  She saw stars 

C-Structure of the sentence - She saw stars 

 
Finally, the f-structure is the set of attribute-value pairs, represented as 

  She" is the subject. 
  "saw" is the verb. 
  "stars" is the object. 

{ 

  PRED 'see<SUBJ, OBJ>' 

  SUBJ [ PRED 'pro'  ] 

  OBJ  [ PRED 'star' ] 

  TENSE PAST 

} 
  C-Structure: Shows the hierarchical arrangement of words into phrases using CFG rules. 
  F-Structure: Represents the grammatical functions and relationships of the sentence components. 
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Describe DFA and NFA. Mention the properties of finite automation. 

Finite automata are mathematical models used to represent and analyze the behavior of discrete 

systems. They come in two primary types: Deterministic Finite Automaton (DFA) and Non-

deterministic Finite Automaton (NFA). 

Deterministic Finite Automaton (DFA) 

A DFA is a finite state machine where for each state and input symbol, there is exactly one transition 
to a next state. In other words, given the current state and an input symbol, the next state is uniquely 

determined. 

Formal Definition: A DFA is defined by a 5-tuple (Q,Σ,δ,q0,F)(Q, \Sigma, \delta, q_0, F)(Q,Σ,δ,q0

,F), where: 

● QQQ is a finite set of states. 

● Σ\SigmaΣ is a finite set of input symbols (alphabet). 

● δ:Q×Σ→Q\delta: Q \times \Sigma \rightarrow Qδ:Q×Σ→Q is the transition function. 

● q0∈Qq_0 \in Qq0∈Q is the start state. 
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● F⊆QF \subseteq QF⊆Q is the set of accept states (final states). 
Example: Consider a DFA that accepts binary strings ending in "01": 

● Q={q0,q1,q2}Q = \{q_0, q_1, q_2\}Q={q0,q1,q2} 

● Σ={0,1}\Sigma = \{0, 1\}Σ={0,1} 

● δ\deltaδ is defined as: 
o δ(q0,0)=q1\delta(q_0, 0) = q_1δ(q0,0)=q1 
o δ(q0,1)=q0\delta(q_0, 1) = q_0δ(q0,1)=q0 
o δ(q1,0)=q1\delta(q_1, 0) = q_1δ(q1,0)=q1 
o δ(q1,1)=q2\delta(q_1, 1) = q_2δ(q1,1)=q2 
o δ(q2,0)=q1\delta(q_2, 0) = q_1δ(q2,0)=q1 
o δ(q2,1)=q0\delta(q_2, 1) = q_0δ(q2,1)=q0 

● q0q_0q0 is the start state. 

● F={q2}F = \{q_2\}F={q2} 
Non-deterministic Finite Automaton (NFA) 

An NFA is a finite state machine where for each state and input symbol, there can be zero, one, or 

multiple transitions to the next state. This allows the NFA to have multiple possible next states for a 

given state and input symbol, including the possibility of transitioning without consuming any input 

symbol (ε-transitions). 

Formal Definition: An NFA is defined by a 5-tuple (Q,Σ,δ,q0,F)(Q, \Sigma, \delta, q_0, F)(Q,Σ,δ,q0
,F), where: 

● QQQ is a finite set of states. 

● Σ\SigmaΣ is a finite set of input symbols (alphabet). 

● δ:Q×Σ→2Q\delta: Q \times \Sigma \rightarrow 2^Qδ:Q×Σ→2Q is the transition function, where 
2Q2^Q2Q denotes the power set of QQQ (i.e., the set of all subsets of QQQ). 

● q0∈Qq_0 \in Qq0∈Q is the start state. 

● F⊆QF \subseteq QF⊆Q is the set of accept states (final states). 
Example: Consider an NFA that accepts the language of binary strings containing "01": 

● Q={q0,q1,q2}Q = \{q_0, q_1, q_2\}Q={q0,q1,q2} 

● Σ={0,1}\Sigma = \{0, 1\}Σ={0,1} 

● • δ\deltaδ is defined as: 

● o δ(q0,0)={q0,q1}\delta(q_0, 0) = \{q_0, q_1\}δ(q0,0)={q0,q1} 

● o δ(q0,1)={q0}\delta(q_0, 1) = \{q_0\}δ(q0,1)={q0} 
o δ(q1,1)={q2}\delta(q_1, 1) = \{q_2\}δ(q1,1)={q2} 
o δ(q2,0)={q2}\delta(q_2, 0) = \{q_2\}δ(q2,0)={q2} 
o δ(q2,1)={q2}\delta(q_2, 1) = \{q_2\}δ(q2,1)={q2} 

● q0q_0q0 is the start state. 

● F={q2}F = \{q_2\}F={q2} 
Properties of Finite Automata 

1. Determinism: 

o DFA: For each state and input symbol, there is exactly one transition. 
o NFA: For each state and input symbol, there can be multiple transitions, including none. 

2. Acceptance of Languages: 

o Both DFAs and NFAs accept the same class of languages, known as regular languages. 
o For every NFA, there is an equivalent DFA that accepts the same language. 

3. Transition Function: 

o DFA: δ:Q×Σ→Q\delta: Q \times \Sigma \rightarrow Qδ:Q×Σ→Q 
o NFA: δ:Q×Σ→2Q\delta: Q \times \Sigma \rightarrow 2^Qδ:Q×Σ→2Q 
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1. Computational Power: 

o Both DFAs and NFAs have the same computational power, meaning they can recognize the 
same set of regular languages. 

4. Epsilon Transitions (ε-transitions): 

o DFA: Does not allow ε-transitions. 
o NFA: Allows ε-transitions, where the automaton can move to a new statewithout consuming 

any input symbol. 
2. Determ inistic vs. Non-deterministic Behavior: 

o DFA: Deterministic in nature, meaning the next state is uniquely determined. 
o NFA: Non-deterministic, meaning there can be multiple possible next states for a given state 

and input. 
3. Convers ion: 

o An NFA can be converted to an equivalent DFA using the subset construction (or powerset 
construction) method. 

Define morphology. Explain Stem and Affix classes of morphemes with examples. 

Morphology is the branch of linguistics that studies the structure and form of words in a language. It focuses on 
the way words are constructed from smaller units called morphemes. A morpheme is the smallest grammatical 
unit in a language that carries meaning. Morphology examines how these morphemes combine to form words and 
how they interact within a language's grammatical rules. 

Classes of Morphemes 
Morphemes can be broadly categorized into two main classes: stems and affixes. 

1. Stem (Root) 
A stem, or root, is the base part of a word that carries the core meaning. It is the part of the 

word to which affixes (prefixes, suffixes, infixes, or circumfixes) can be attached to modify its meaning or 
grammatical function. Stems can often stand alone as words themselves. 

Examples: 

● In the word "unhappiness": 
o "happy" is the stem. 

● In the w ord "running": 
o "run" is the stem. 

2. Affix 
o An affix is a morpheme that is attached to a stem to form a new word or alter its meaning. 

Affixes cannot stand alone and are always bound morphemes. Affixes can be further divided into different types 
based on their position relative to the stem: 

● Prefix: An affix that is attached to the beginning of a stem. 
o Examples: 

▪  "un-" in "unhappy" (where "un-" means "not") 

▪  "pre-" in "preview" (where "pre-" means "before") 

● Suffix: An affix that is attached to the end of a stem. 

▪  Examples: "-ness" in "happiness" (where "-ness" turns an adjective into a noun) 

▪  "-ing" in "running" (where "-ing" indicates a present participle or gerund) 

● Infix: An affix that is inserted within a stem. Infixes are less common in English but are found in other 
languages. 

o Examples: 
o In Tagalog (a language spoken in the Philippines), the infix "-um-" can be inserted 

within a root word. For instance, "sulat" (to write) 

▪  becomes "sumulat" (wrote). 

● Circumfix: An affix that surrounds a stem, attaching to both the beginning and the end. 

Circumfixes are also rare in English but can be found in other languages. 
o Examples: 

▪  In German, the word "gearbeitet" (worked) uses the circumfix "ge-...-t" 

with the stem "arbeit" (work). 

● Morphology studies the structure of words and how they are formed from morphemes. 

● Stem (root) is the core part of a word carrying its main meaning. 
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● Examples: "happy" in "unhappy", "run" in "running" 

● Affix is a morpheme attached to a stem to modify its meaning or function. 

● o Prefix: "un-" in "unhappy" 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
What is POS tagging? List and explain different taggers with Suitable Examples. 

Part-of-Speech (POS) tagging is the process of assigning a part of speech to each word in a given text. 

The parts of speech include categories like nouns, verbs, adjectives, adverbs, pronouns, conjunctions, 

prepositions, and more. POS tagging helps in understanding the syntactic structure of a sentence and is 

a crucial step in many natural language processing (NLP) tasks. 

Different Types of POS Taggers 

There are several types of POS taggers, each employing different methods and algorithms to perform 

tagging. Here are some of the common types: 

1. Rule-Based Taggers 

Rule-based taggers use a set of hand-crafted linguistic rules to assign POS tags to words. These rules 

are based on the morphological, syntactic, and sometimes semantic properties of the words. 

Example: 

● Brill Tagger: The Brill tagger is a well-known rule-based tagger that starts with an initial 
assignment of POS tags and then applies a series of transformational rules to correct the tags. 

For instance, it might use rules like "if a word ending in 'ed' is preceded by 'was,' then tag it 

as a past participle." 
Example Sentence: 

● "The cat sat on the mat." 

● Initial tagging: The/DT cat/NN sat/VBD on/IN the/DT mat/NN. 

● After applying rules: (No changes needed in this simple example.) 
2. Statistical Taggers 

Statistical taggers use probabilistic models to assign POS tags based on the likelihood of a particular 

sequence of tags. These models are trained on annotated corpora. 

Example: 

● Hidden Markov Model (HMM) Tagger: HMM taggers use the probabilities of tag 

sequences (state transitions) and the probabilities of words given tags (emissions) to 
determine the most likely tag sequence for a sentence. 

Example Sentence: 

● "The cat sat on the mat." 

● Tagging: The/DT cat/NN sat/VBD on/IN the/DT mat/NN. 
3. Machine Learning-Based Taggers 

Machine learning-based taggers use various machine learning algorithms to learn from annotated 
training data. These taggers can capture more complex patterns in the data. 

Examples: 

● Maximum Entropy (MaxEnt) Tagger: This tagger uses the maximum entropy principle to 

model the probabilities of different tags. 



 

● Conditional Random Fields (CRF) Tagger: CRF taggers model the conditional 

probabilities of the tags given the input sequence, allowing for the incorporation of various 

contextual features. 
Example Sentence: 

● "The cat sat on the mat." 

● Tagging with a CRF Tagger: The/DT cat/NN sat/VBD on/IN the/DT mat/NN. 
Neural Network-Based Taggers 

Neural network-based taggers, particularly those using deep learning techniques, have become popular 

due to their ability to capture complex patterns and dependencies in the data. 

Examples: 

● Recurrent Neural Networks (RNNs): RNNs, including Long Short-Term Memory (LSTM) 
networks, can handle sequential data effectively and are used for POS tagging. 

● Bidirectional LSTMs (BiLSTMs): BiLSTMs process the sequence in both directions (forward 
and backward), capturing context from both sides of a word. 

● Transformer-Based Models: Models like BERT (Bidirectional Encoder Representations from 
Transformers) have set new benchmarks in POS tagging by using self-attention mechanisms 
to understand context. 
 

Example Sentence: 

 

"The cat sat on the mat." 

Tagging with BERT: The/DT cat/NN sat/VBD on/IN the/DT mat/NN. 

 
Psuedo code take it from PPT which I shared.. 
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● Suffix: "-ness" in "happiness" 

o Infix: "-um-" in Tagalog "sumulat" 

● o Circumfix: "ge-...-t" in German "gearbeitet" 

● Understanding morphology helps in analyzing word formation, language structure, and the way meaning 
is constructed in different languages. 

What is  Poss Tagging?List  & Explain Different  taggers with suitable examples? 
Part-of-Speech (POS) tagging is the process of assigning a part of speech to each word in a given text. The parts of 
speech include categories like nouns, verbs, adjectives, adverbs, pronouns, conjunctions, prepositions, and more. 
POS tagging helps in understanding the syntactic structure of a sentence and is a crucial step in many natural 
language processing (NLP) tasks. 
 
Different Types of POS Taggers 

There are several types of POS taggers, each employing different methods and algorithms to perform tagging. Here 
are some of the common types: 
 
1. Rule-Based Taggers 
 
Rule-based taggers use a set of hand-crafted linguistic rules to assign POS tags to words. These rules are based on 
the morphological, syntactic, and sometimes semantic properties of the words. 

Example: 

● Brill Tagger: The Brill tagger is a well-known rule-based tagger that starts with an initial assignment of 
POS tags and then applies a series of transformational rules to correct the tags. For instance, it might 
use rules like "if a word ending in 'ed' is preceded by 'was,' then tag it as a past participle." 

Example Sentence: 

● "The cat sat on the mat." 

● Initial tagging: The/DT cat/NN sat/VBD on/IN the/DT mat/NN. 

● After applying rules: (No changes needed in this simple example.) 

2. Statistical Taggers 

Statistical taggers use probabilistic models to assign POS tags based on the likelihood of a particular sequence of 
tags. These models are trained on annotated corpora. 

Example: 

● Hidden Markov Model (HMM) Tagger: HMM taggers use the probabilities of tag sequences (state 
transitions) and the probabilities of words given tags (emissions) to determine the most likely tag 
sequence for a sentence. 

Example Sentence: 

● "The cat sat on the mat." 

● Tagging: The/DT cat/NN sat/VBD on/IN the/DT mat/NN. 

3. Machine Learning-Based Taggers 

Machine learning-based taggers use various machine learning algorithms to learn from annotated training data. 
These taggers can capture more complex patterns in the data. 

Examples: 

● Maximum Entropy (MaxEnt) Tagger: This tagger uses the maximum entropy principle to model the 
probabilities of different tags. 
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● Conditional Random Fields (CRF) Tagger: CRF taggers model the conditional probabilities of the 
tags given the input sequence, allowing for the incorporation of various contextual features. 

Example Sentence: 
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● "The cat sat on the mat." 

● Tagging with a CRF Tagger: The/DT cat/NN sat/VBD on/IN the/DT mat/NN. 
4. Neural Network-Based Taggers 
Neural network-based taggers, particularly those using deep learning techniques, have become popular due to 
their ability to capture complex patterns and dependencies in the data. 

Examples: 

● Recurrent Neural Networks (RNNs): RNNs, including Long Short-Term Memory (LSTM) networks, 
can handle sequential data effectively and are used for POS tagging. 

● Bidirectional LSTMs (BiLSTMs): BiLSTMs process the sequence in both directions (forward and 
backward), capturing context from both sides of a word. 

● Transformer-Based Models: Models like BERT (Bidirectional Encoder Representations from 
Transformers) have set new benchmarks in POS tagging by using self-attention mechanisms to 
understand context. 

● Exampl e Sentence: "The cat sat on the mat." 

● Tagging with BERT: The/DT cat/NN sat/VBD on/IN the/DT mat/NN. 

Calculate the Minimum Edit Distance Algorithm by given string “abcdef” to “adcgef ”. 

 
The Minimum Edit Distance (MED) algorithm, also known as the Levenshtein distance algorithm, calculates the 
minimum number of operations required to transform one string into another. The operations considered are: 
 
Insertion of a character. 
Deletion of a character. 
Substitution of a character. 

Initialization: 

● Create a 2D table where the cell at row iii and column jjj represents the minimum edit 

distance between the first iii characters of the first string and the first jjj characters of the 

second string. 

● Initialize the first row and first column of the table. The first row represents transforming an 

empty string into the second string, which requires jjj insertions. The first column represents 

transforming the first string into an empty string, which requires iii deletions. 
1. Filling the Table: 

o For each cell (i,j)(i, j)(i,j), check the following conditions: 

▪  If the characters of both strings match (i.e., str1[i−1]==str2[j−1]str1[i-1] == 

str2[j-1]str1[i−1]==str2[j−1]), then the value is the same as the diagonal 

value (i.e., no additional cost is required). 

▪  If the characters do not match, consider the minimum of the three 

operations (insertion, deletion, substitution) plus one. 
 nul

l 
a d c g e f 

null 0 1 2 3 4 5 6 

a 1 0 1 2 3 4 5 

b 2 1 1 2 3 4 5 

c 3 2 2 1 2 3 4 

d 4 3 2 2 2 3 4 

e 5 4 3 3 3 2 3 

f 6 5 4 4 4 3 2 

● For cell (1,1): Characters 'a' and 'a' match, so cost = 0 (same as diagonal value). 

● For cell (1,2): Characters 'a' and 'd' do not match. Min operations = min(insert 1+1, delete 

1+1, substitute 1+1) = 1. 

● Continue filling the table using the same logic. 
The minimum edit distance (MED) is found in the cell (6,6), which is 2. This means the minimum 

number of operations required to transform "abcdef" to "adcgef" is 2. 
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Describe Paninian framework for Indian languages. 

Paninian grammar (PG) was written by Panini in 500 BC in Sanskrit. PG framework can be used for other Indian 
languages and even for some Asian languages. Unlike English, Asian languages are SOV (Subject-Object-Verb) 
ordered and inflectionally rich. The inflections provide important syntactic and semantic for language analysis and 

understanding. The classical Paninian Grammar facilitates the task of obtaining the semantics through syntactical 

framework. In PG, an extensive and perfect interpretation of Phonology, Morphology, Syntax, and Semantics is 

available. 

Layered representation in panini grammar: 
 
Paninian Grammar (PG) framework is said to be syntactico–semantic that is one can go from the surface layer 
to deep semantics by passing through immediate layers. PG works on various levels of language analysis to 
achieve the meaning of the sentence from the hearer’s perspective. To achieve the desired meaning, the grammar 
analysis is divided itself internally into various levels as shown in the figure below. 
 

 
Semantic Level: 

• Represents the speaker’s actual intention, that is, his real thought for the sentence. 
Surface L evel: 

• Surface level is the actual string or the sentence. It captures the written or the spoken sentences as it is.  

• Vibhakti Level: words. At the Vibhakti level, a noun is formed containing a noun, which contains the 

instances of noun or pronoun, etc.  
 
 

• Vibhakti is the word suffix, which helps to find out the participants, gender as well as form of the word.  

• Vibhakti level is purely syntactic. At this level, the case endings are used to form the local groups of the 
Vibhakti for verbs includes the verb form and the auxiliary verbs. 

• Vibhakti gives Tense Aspect Modality details of the word which is popularly known as TAM.  
Karaka Level: 

• At the Karaka level, the relation of the participant noun, in the action, to the verb is determined.  

• Karaka relations are Syntactico-semantic.  

• These relations are established in between the verb and other constituent nouns that are present in the 
sentences. Through, these relations, the Karakas try to capture the information from the semantics of the 
texts.  

• Kakara level processes the semantics of the language but represents it at the syntactic level. Hence 

itacts as a bridge between semantic and syntactic analysis of a language.  
Karaka T heory: 

• The etymological meaning of the word Karaka is ‘one who does something’, i.e. one who performs an 
action.  

• The Karaka and the Kriya, i.e. the cases and verb are bounded with the sense of mutual requirement. 

• The one who performs an action, accepts an action, or otherwise helps to perform an action is known as 
a Karaka.  

• There is a mutual expectancy in between the action i.e. Kriya and the adjuncts i.e. Karaka.  

• The presence of one calls for the existence of the other. In other wordsKirya and Karaka are mutually 

exclusive.  
bounded by space (place) or by time. 
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• Various K arakas -  
1. Karta  - subject 
2. Karma - object 

 
 

1. Karana - instrument 
2. Sampradhana - beneficiary 
3. Apadana - separation 

 
4. Adhara or Adhikarana - locus 
5. Sambandh - relation 
6. Tadarthya - purpose 

The Karta, Karma, and Karana are considered the foremost Karakas while Sampradana, Apadana, and Adhikarana Karakas are known as the 
influenced Karakas. 
 
 

Karta Karaka: 
The Karta Karaka is the premier one according to action and it is used to perform an action independently of its own. An action indicated in a 
sentence is entirely dependent upon the Karta-Karaka. Activity either resides in or rises from the Karta only. 
The man cut the wood with an axe 
Ram cuts the apple with knife. 
 
karana - axe and knife 
 

Sampradhana Karaka: 
The word Sampradana can be interpreted as ‘He to whom something is given properly’. Sampradana Karaka 
receives or gets benefited from the action. It can also be said that, the person/object for which the Karma is intentional, is known as Sampradana. 
In this regard, the Sampradana is the final destination of the action. 
 
Example:  
Dipti gave chocolates to Shambhavi 
Shambhavi is sampradhana.  
 
Ram gave me a book. 
me is sampradhana 
 
He gave flowers for Shanbhavi 
Shambhavi is sampradhana 
 
Apadana Karaka: 
About Apadana Karaka Panini stated that, as when separation is affected by a verbal action, the point of separation is called Apadana. During the 
execution of the action whenever the task of separation from a certain entity is executed then whatever remains unmoved or constant is known 
as Apadana. Thus, an Apadana denotes the starting point of an action of separation. The entity from which something gets separated or is separated 
out is known as Apadana. 
Example: 
Shambhavi tore the page from the book with a scissor. 
From the book is apadana 
Adhikarana Karaka:   
‘Adhikarana’ is the place or thing, which is the location of the action existing in the agent or the object. Adhikarana is assigned to the locus of the 
action i.e. Kriya. Adhikarana may indicate the place at which the Kriya (the action) is taking place or the time at which the Kriya is carried out. 
Any action i.e. the Kriya is either 
 
Example: 
‘Yesterday Shambhavi hit the dog with the stick in front of the shop.’ 
The Karaka annotation of the above sentence can be given as 

hit                     : verb  (root) 
Yesterday         : Kala-Adhikarana (time) 
Shambhavi  : Agent i.e. Karta 
Dog                  : Karma 
Stick                 : Karana 

                                                Shop                 :Desh-Adhikarana (location i.e. Place) 
 
6b) Explain Transformational Grammar with Examples    5marks  Co1     L1 
 
 Explanation-3 

Steps & Examples -2 
 

 Transformational Grammar has 3 Components        

 



 

Transformational Grammar, introduced by Noam Chomsky in the 1950s, is a theory of grammar that focuses on how different sentence 
structures can be generated from a common underlying structure through a series of transformations. The core idea is that sentences have a deep 
structure (which captures the core semantic relations) and a surface structure (which is the actual spoken or written form). Transformations are 

the rules that convert deep structures into surface structures. 
Key Concepts 

1. Deep Structure: This represents the abstract syntactic representation of a sentence, capturing the basic syntactic relations and 
meaning. 

2. Surface Structure: This is the actual sentence as spoken or written, which results from applying transformational rules to the deep 
structure. 

3. Transformational Rules: These are rules that transform the deep structure into the surface structure. Examples include movement 

(e.g., moving a word or phrase to a different position in the sentence), insertion, deletion, and substitution. 
Examples of Transformational Grammar 

Example 1: Question Formation 
Consider the declarative sentence: 

● Deep Structure: "The cat is on the mat." 
To transform this into a question, we apply a movement transformation known as "Subject-Auxiliary Inversion": 

● Surface Structure: "Is the cat on the mat?" 
Transformational Rule: 

● Move the auxiliary verb ("is") to the front of the sentence. 
Example 2: Passive Transformation 
Consider the active sentence: 

● Deep Structure: "The dog chased the cat." 
To transform this into a passive sentence, we apply the passive transformation: 

● Surface Structure: "The cat was chased by the dog." 
Transformational Rules: 

1. Move the object ("the cat") to the subject position. 
2. Insert the auxiliary verb "was." 
3. Add the preposition "by" before the original subject ("the dog"). 

Example 3: Relative Clause Formation 
Consider the sentence with a relative clause: 

● Deep Structure: "I met the man. The man is a doctor." 
To combine these sentences into one with a relative clause: 

● Surface Structure: "I met the man who is a doctor." 
Transformational Rules: 

1. Identify the noun phrase common to both sentences ("the man"). 
2. Replace the repeated noun phrase in the second sentence with a relative pronoun ("who"). 

3. Embed the second sentence within the first as a relative clause. 

Tree Diagrams in Transformational Grammar 
Tree diagrams (or syntax trees) are often used to represent the structures of sentences. They visually illustrate the relationships between different 
parts of a sentence. 

Tree Diagram for "The cat is on the mat." 
Deep Structure Tree: 
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Surface Structure Tree for "Is the cat on the mat?": 
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Top of Form 

Bottom of Form 
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