21AD62-DATA SCIENCE AND APPLICATIONS ANSWER KEY IAT-1

USN							
	USN						

Internal Assessment Test 1 –JUNE 2024

	1		Interi	hal Assessment 'I		. –JUNE 2024	•						
Sub	Data Science an	Data Science and Its Applications SubCode: 21AD6					21AD62	Brano h		ML			
Date	03/06/24 Duration: 90 minutes Max Marks: 50 SEC VI-A										OBE		
			SCHEME A	ND SOLUTION	<u>S</u>			Μ	ARKS	СО	RB T		
1a)	Explain the for normal distribut Answer- Definition +Ex i)Mode-It is a v	ation iv) His ample-2M value with P	stograms v) each iighest frequ	Binomial Dist uency in the da	ribu ata se	tion et +Example	9		10	1	L2		
	ii)Quantile-rep +Example iii)Std normal of deviation=1+fo iv)Histogram - v)Binomial Dis comes success	distribution- ormula for s A visual rep stribution-a	- It is of norr td.normal d presentation discrete dis	nal distribution istribution for continuou	n wi s dis	th mean values	ue 0 and stand	lard					
2a)	Explain Bayes Theorem and solve the following, A diagnostic test has 99% accuracy and 60% of all people have Covid-19. If a patient tests positive, what is the probability that they have the disease? Answer- Bayes theorem 3 M It is used to determine the conditional probability of event A when event B has already occurred(1) P(a b)=(p(b a)*p(a))/p(b) with each quantity explanation(2) Problem Solution- 3M P(positive covid19) = 0.99 P(covid19) = 0.6 P(positive) = 0.6*0.99+0.4*0.01=0.598 $P(covid19 positive) = \frac{0.99*0.6}{0.598} = 0.993$						ility	6	1	L3			
2b)	Describe the statement "correlation is not causation" with an example in detail. Answer- Correlation shows the relationship between the values of 2 variables. But we cannot conclude that one variable causes the change in the other. The relationship may b coincidental or a third factor may cause both the variables to change(3 M) Example(1M)								4	1	L2		

· · · · · ·			1	1
3a)	Describe dispersion and variance and write the python code to compute the variance. Answer- Dispersion- it is used to measure how spread the data is +Example(2M) Variance-Definition +Formula(2M) Python code:(2 M) def variance(x): n=len(x)	6	1	L3
	d=mean(x) return sumofsquares(d)/n-1			
3b)	Illustrate central limit theorem with a neat diagram. Answer- Central limit theorem –2 M It states that the sample mean distribution of a random variable will assume a near normal or normal distribution if the sample size is enough though -sample size- distribution variation Diagram—2 M	4	1	L2
4a)	Explain the following with example, i) Null and Alternative Hypothesis ii) p-value iii) Type I Error. iv) Level of significance v) A/B Testing Answer- Definition +Example 2M each i) Null hypothesis -statement about a population that is believed to be true and Alternative Hypothesis -statement that is contradictory to the null hypotheses Example ii) p-value -The probability value obtained after the experiment. It is calculated from the Z value. It is compared with the level of significance to accept or reject null hypothesis-Conditions specify.+Example iii) Type I ErrorIts when your null hypothesis is true but we reject it in order to support the alternative hypothesis.+Example iv) Level of significance- parameter used in hypothesis testing to determine the threshold inorder to accept or reject the null hypothesis.+Example v) A/B Testing-Its is used to compare two products to find which is more efficient- method-example	10	2	L2
5a)	Explain the following with an example a) Named Tuple b) Data classes Answer- a) Named Tuple Definition +Example 3M b) Data classes Definition +Example 3M	6	2	L2
5b)	Write a python code for the probability density function of a Beta distribution. Answer- def B(alpha, beta): return math.gamma(alpha) * math.gamma(beta) / math.gamma(alpha + beta) def beta_pdf(x, alpha, beta): if $x < 0$ or $x > 1$: return 0 return $x ** (alpha - 1) * (1 - x) ** (beta - 1) / B(alpha, beta)$	4	2	L3

6a)	Explain how gradient descent is used to fit parameterized models.			
	Answer-			
	Use of Gradient descent-2M	10	2	L2
	How it is determined-2M			
	Linear regression-how theta are adjusted-6M			